Databases in Finance

by Angel Marchev, Jr.

Data science overview

by Angel Marchev, Jr.

Shift happens

https://www.youtube.com/watch?v=fbcMPGyPr8k

THE 5 V's OF DATA

Big Data does a pretty good job of telling us what happened, but not why it happened or what to do about it. The **5 V's represent specific characteristics and properties** that can help us understand both the challenges and advantages of big data initiatives.

The magnitude of the data being generated.

The speed at which data is being generated and aggregated.

The different types of data.

The trustworthiness of the data in terms of accuracy in quality.

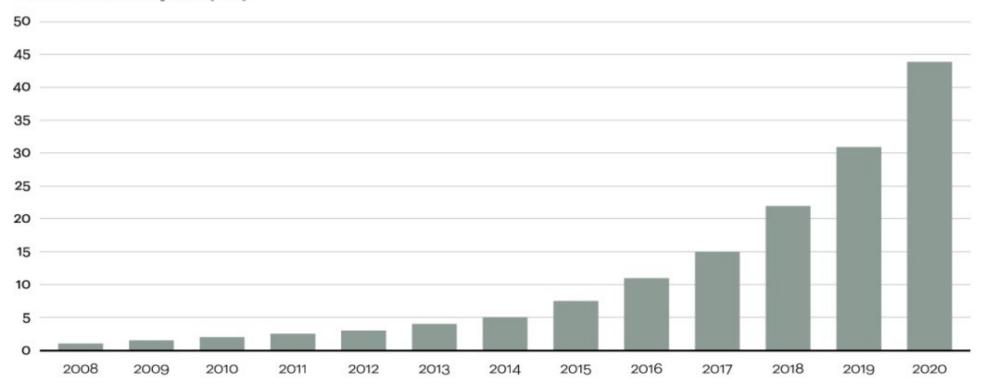
The economic value of the data.

90% of the data in the world today has been created in the last 2 years alone.

Literally the speed of light! Data doubles every 40 months.

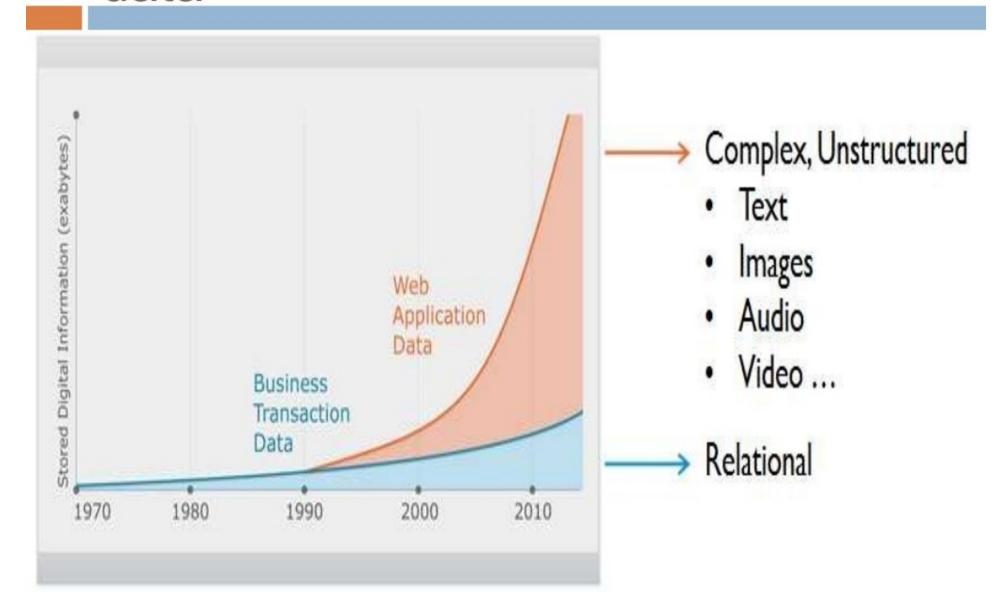
> Structured, semistructured and unstructured data.

Because of the anonimity of the Internet or possibly false identities, the reliability of data is often in question.


Having access to big data is no good unless we can turn it into value.

How big?

Figure 1


Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020

Source: Oracle, 2012

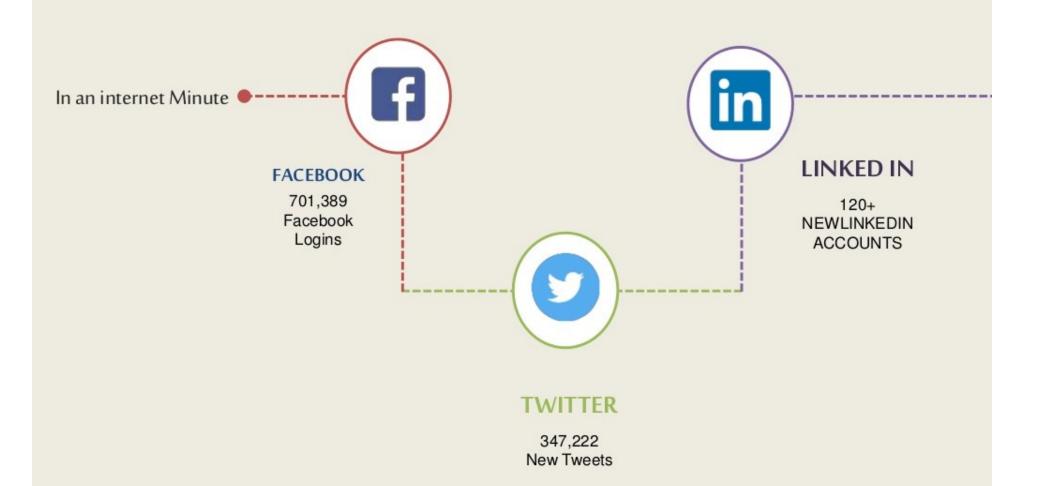
Structured data vs Unstructured data

How Much Are Data That You Create?

we create
2.5 Quintillion bytes
of data

2,500,000 Tera bytes

Daily routine



What Happens In An Internet Minute?



YouTube

2.78MILLION Video Views

App Store

51,000 app downloads from apples Structured and Unstructured Data: What is It?

What is Structured Data?

What is Unstructured Data?

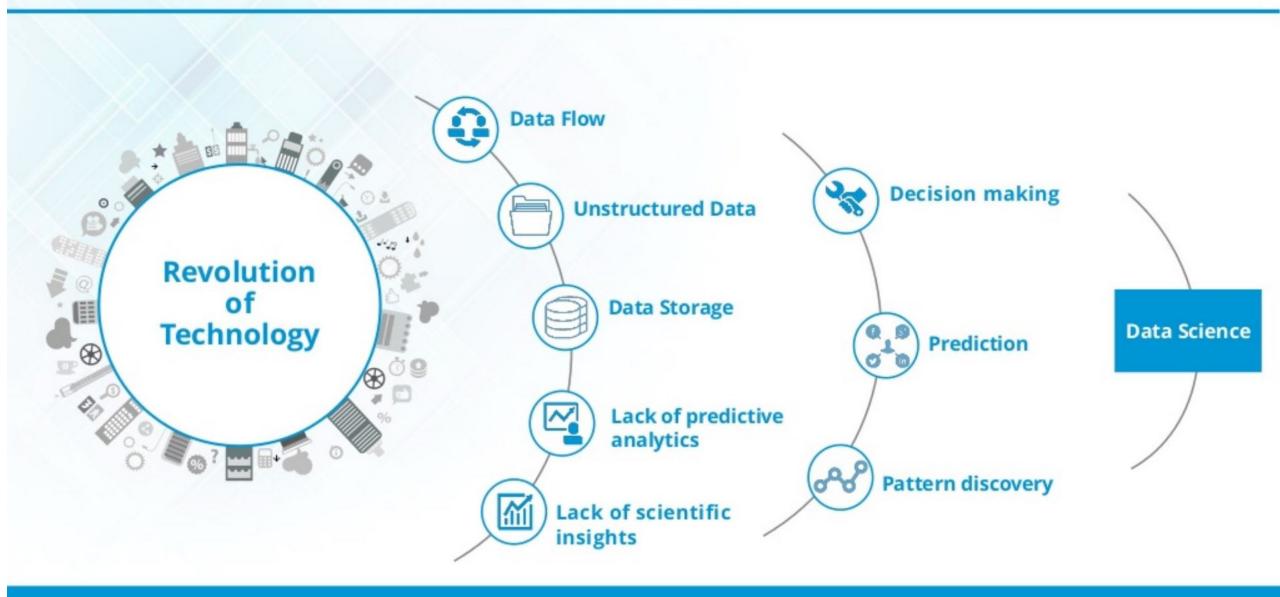
Need For Data Science

So Data Science is mainly needed for:

Better Decision Making

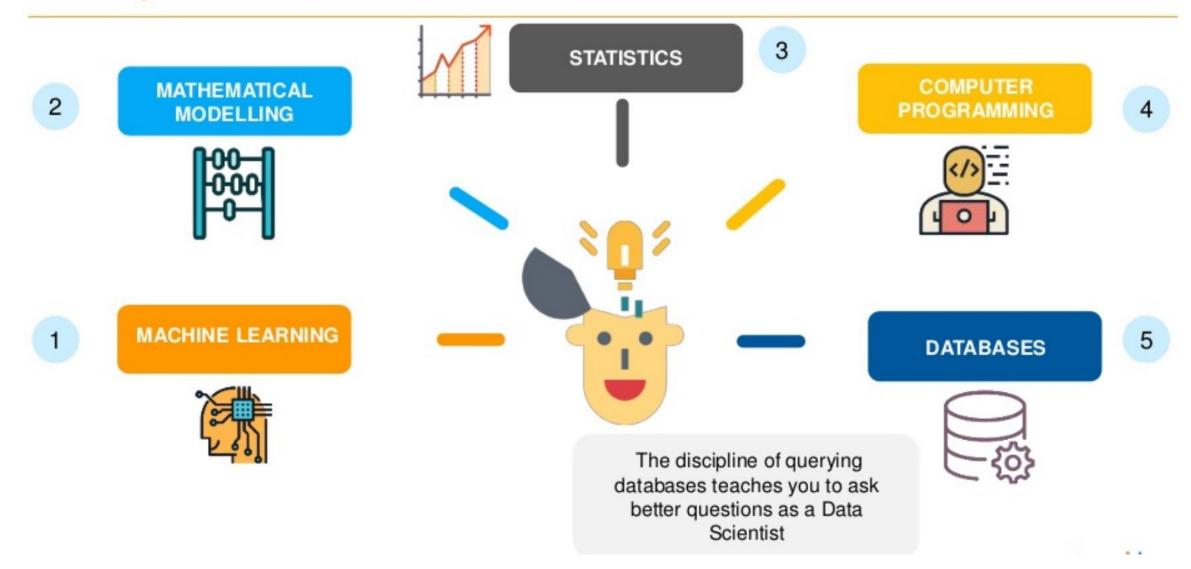
Whether A or B?

Predictive Analysis


What will happen next?

Pattern Discovery

Is there any hidden information in the data?


Need Of Data Science

BI Vs. Data Science

Characteristics	Business Intelligence	Data Science
Perspective	Looking Backward	Looking Forward
Data Sources	Structured (Usually SQL, often Data Warehouse)	Both Structured and Unstructured (logs, cloud data, SQL, NoSQL, text)
Approach	Statistics and Visualization	Statistics, Machine Learning, Graph Analysis, Neuro- linguistic Programming (NLP)
Focus	Past and Present Present and Future	
Tools	Pentaho, Microsoft BI, QlikView, R	RapidMiner, BigML, Weka, R

Prerequisites for Data Science

Tools/Skills used in Data Science

Data Warehousing

Skills: ETL, SQL, Hadoop, Apache Spark,

Tools: Informatica/ Talend, AWS Redshift

Data Analysis

Skills: R, Python, Statistics

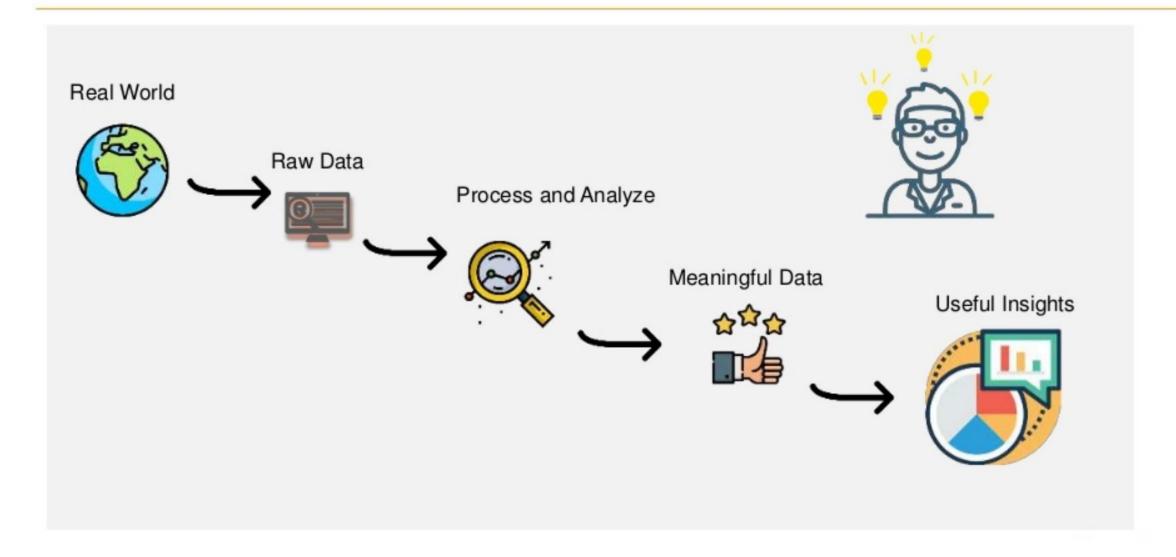
Tools: SAS, Jupyter, R studio, MATLAB,

Excel, RapidMiner

Data Visualization

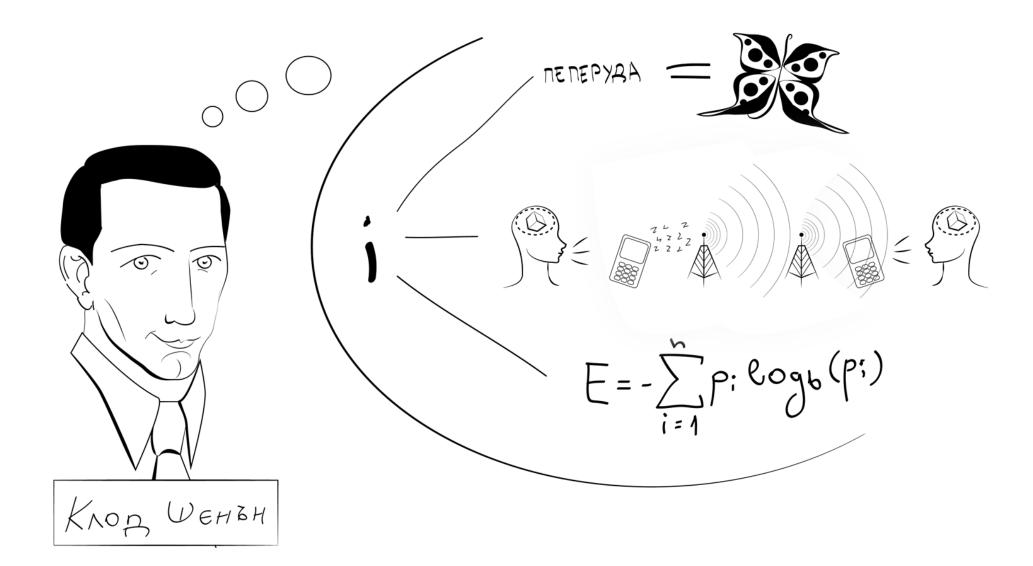
Skills: R, Python libraries

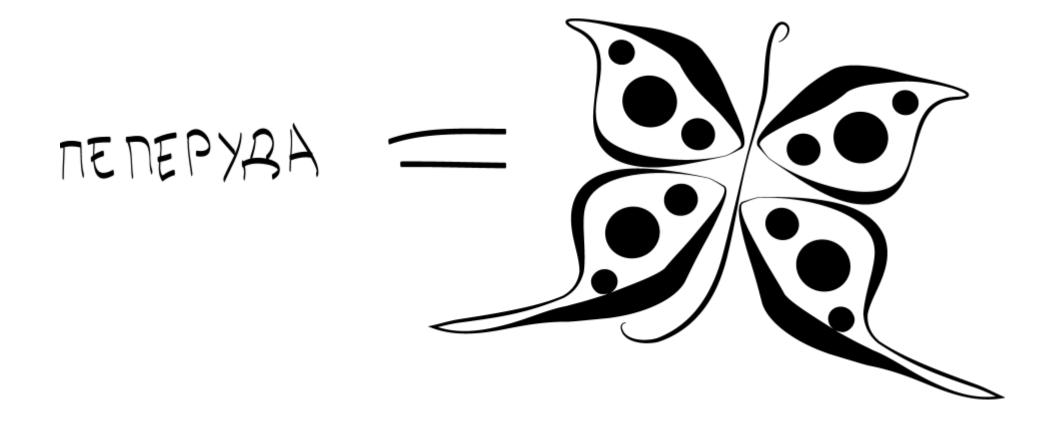
Tools: Jupyter, Tableau, Cognos, RAW


Machine Learning

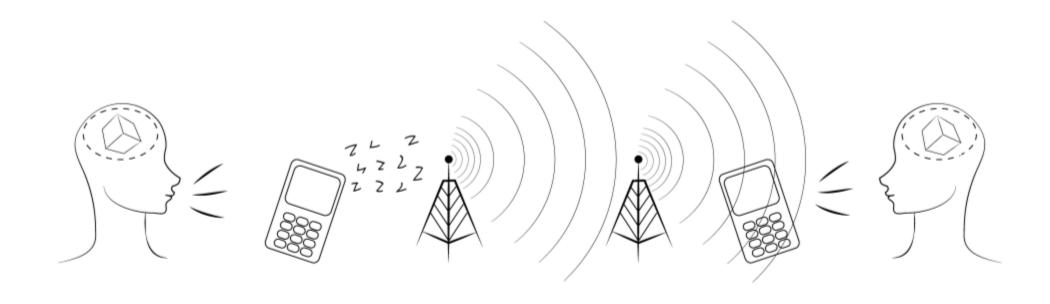
Skills: Python, Algebra, ML Algorithms, Statistics

Tools: Spark MLib, Mahout, Azure ML studio


What does a Data Scientist do?


Theory of Information

by Angel Marchev, Jr.


Theory of Information

Semantics

Communication

Entropy

Informational entropy

• Let the system S have n possible states Ai with corresponding probabilities Pi:

The degree of uncertainty of the system is estimated by the value ENTROPY

$$H = -\sum_{i=1}^{n} p_i \cdot \log_2 p_i$$

Properties of entropy

- 0) Entropy is determined ONLY by :
 - *n* (the number of possible system states / number of possible outputs)
 - P_n (corresponding probabilities)
- 1) $H \ge 0$, $0 \le p_i \le 1 => \log_2 p_i > 0$
- 2) $H=max, p_1=p_2=p_3=...=p_n$
- 3) H=0, $p_k=1$ $p_{i\neq k}=0$
- 4) *0≤H≤log₂n*

A measure of entropy

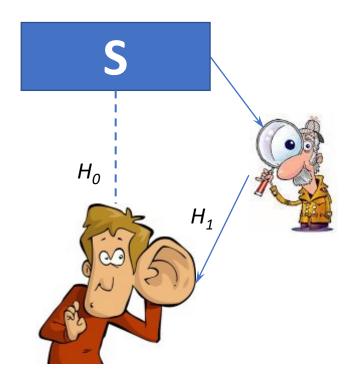
- Unit of measure for entropy: the uncertainty of an event with two equally probable outcomes.
- *H*=*log*₂*n*
- N=2 => H=1
- "BIT"

Problem

System with 5 possible states with probabilities:

•
$$p_1 = \frac{1}{4}, p_2 = \frac{1}{8}, p_3 = \frac{1}{2}, p_4 = 0, p_5 = \frac{1}{8}$$

 $H = ?$


$$H = -\sum_{i=1}^{n} p_i . \log_2 p_i$$

$$H = -\frac{1}{4} \cdot \log_2 \frac{1}{4} - \frac{2}{8} \cdot \log_2 \frac{1}{8} - \frac{1}{2} \cdot \log_2 \frac{1}{2} - 0 - \log_2 \frac{1}{4}$$

$$\log_2 4 = 2, (2^2 = 4)$$

$$H = \frac{1}{4}.2 + \frac{2}{8}.3 + \frac{1}{2}.1 = \frac{14}{8} = 1.75$$

Amount of information

 A measure to reduce uncertainty, ie. Measure the novelty received as a result of the message

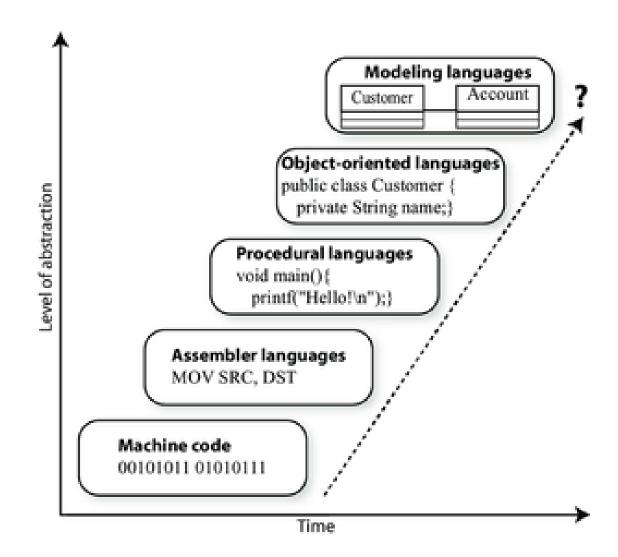
$$H_{1} < H_{0}$$
 $I = H_{0} - H_{1}$
 $H_{1} = 0$, $I = H_{0}$

Problems

<i>I=?</i>	H_0	H ₁
p_1	1/4	0
p_2	1/8	1/4
p_3	1/2	1/2
p_4	0	0
p_5	1/8	1/4

How many bits of information is contained in the statement: "My wife gave birth to a girl"?

How many bits of information are contained in the statement: "Of the 5 possible answers to question 20 of the test, I know for sure that the answer is either A or B"?


$$H = -\sum_{i=1}^{n} p_i \cdot \log_2 p_i$$

$$I = H_0 - H_1$$

Data as information


by Angel Marchev, Jr.

Introduction / Data, Information & Knowledge

Data = Information + Uncertainty

- Information = Meaningful Component in Data

$$y = f(x)$$

Knowledge = Comprehended Information

Data:

A set of values recorded on one or more observational units i.e. Object, person etc

Types of data:

- (D)Qualitative/ Quantitative data
- (E)Discrete/ Continuous data
- (F)Primary/ Secondary data
- (G)Nominal/ Ordinal data

Qualitative data:

- also called as enumeration data.
- Represents a particular quality or attribute.
- There is no notion of magnitude or size of the characteristic, as they can't be measured.
- Expressed as numbers without unit of measurements . Eg: religion, Sex, Blood group etc.

Quantitative data:

- Also called as measurement data.
- These data have a magnitude.
- Can be expressed as number with or without unit of measurement. Eg: Height in cm, Hb in gm%, BP in mm of Hg, Weight in kg.

Quantitative data	Qualitative data
Hb level in gm%	Anemic or non anemic
Ht in cms	Tall or short
BP in mm of Hg	Hypo, normo or hypertensive
IQ scores	Idiot, genius or normal

Discrete / Continuous data:

Discrete data: Here we always get a whole number. Eg. Number of beds in hospital, Malaria cases. Continuous data: it can take any value possible to measure or possibility of getting fractions. Eg. Hb level, Ht, Wt.

Primary/ Secondary data:

Primary data: Obtained directly from an individual, it gives precise information.

Secondary data: Obtained from outside source, Eg: Data obtained from hospital records, Census.

Nominal/ Ordinal data:

Nominal data: the information or data fits into one of the categories, but the categories cannot be ordered one above another . E.g. Colour of eyes, Race, Sex.

Ordinal data: here the categories can be ordered, but the space or class interval between two categories may not be the same. E.g.. Ranking in the class or exam

Types of measurement scales and their properties Stevens, S. S. (1946). "On the Theory of Scales of Measurement". Science 103 (2684): 677-680. Category (Nominal) Ordinal (Rank) Absolute Relative Interval Characterizes the Characterizes the Characterizes the Characterizes the Characterizes the measured objects and / or phenomena according to the presence or absence the degree of change of a the degree of the degree of the degree of of a certain feature. manifestation of a certain manifestation of a certain manifestation of a certain certain relative property in relative property in an absolute property in an absolute property in a a continuous magnitude. interrupted magnitude. interrupted magnitude. continuous magnitude. Logical / Mathematical operations Examples: Dichotomous: Temperature change Dichotomous: Date ('From 1878 to 1945' / (0, 1, 2, 3, ... 100 y.) Health status (-60, +20) Dichotomous and Gender non-dichotomous 'From 1945 to 1989' / (male or female) (healthy or sick). Truth 'After 1989') Temperature Annual return (10°, 11°, 12°, 13°, ... 40°) Variable name Non-dichotomous: (True or false). (- 31%, +12%) Beauty (possible values) Nationality (Bulgaria / Romania / ('Under 18' / 'from 18 to (beautiful or ugly) others) 25' / '25 to 35 years old' / 'over Non-dichotomous: Opinion 35 years old') ('completely agree'/ 'rather agree' / Temperature 'rather disagree' / ('Below 0 °' / 'from 0 ° C to 20 ° C') 'completely disagree') 'From 20 ° C to 40 ° C' / 'above 40 ° C') Geometric mean Geometric mean Arithmetic mean Median Arithmetic mean Measure for Arithmetic mean Median Mode Mode Median central tendency Median Mode Mode Mode Qualitative or Qualitative Quantitative Quantitative Qualitative Quantitative quantitative

Data types

1) Solve the quiz:

https://www.med.soton.ac.uk/stats_eLearning/typesofdataqui
z/index.html

2) Make a print screen with your final score

3) Submit it here:

https://forms.gle/7YRmC4CehbdGBBby7

Data types by storage (programming)

type	type set of values		sample literal values		
int	integers	+ - * / %	99 12 2147483647		
double	floating-point numbers	+ - * /	3.14 2.5 6.022e23		
boolean	boolean values	&& !	true false		
char	characters		'A' '1' '%' '\n'		
String	sequences of characters	+	"AB" "Hello" "2.5"		

Binary Systems

https://www.youtube.com/watch?v=LpuPe81bc2w

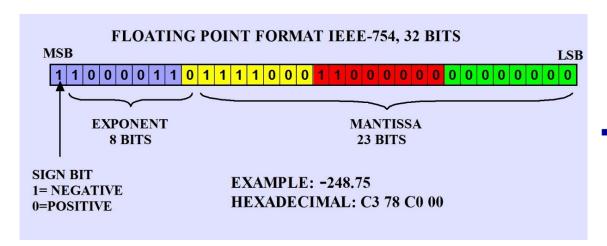
https://www.youtube.com/watch?v=b7pOcU1xMks

Binary representation of integers

	128	64	32	16	8	4	2	1
8 bit binary	1	0	1	1	0	0	0	1
digit	128 + 32 + 16 + 1 = 177							

	b7 b0
Signed byte (8 bit) integer	S 1111111
Harimand by to 70 h30 into you	b7 b0
Unsigned byte (8 bit) integer	بيبينيا
Signed word (16 bit) integer	b15 b0 S
	b15 b0
Unsigned word (16 bit) integer	ليبينالينا
	b31 b0
Signed long word (32 bit) integer	<u> </u>
	b31 b0
Unsigned long word (32 bit) integer	

S. Sign bit


3.4 Data Type Definitions

Below is a table of all used data types.

Name	Data type	Size bits	Size bytes	Range
char, int8	signed integer	8	1	- 128 127
BYTE	unsigned integer	8	1	0 256
short	signed integer	16	2	- 32'768 32'767
WORD	unsigned integer	16	2	0 65'535
long	signed integer	32	4	- 2'147'483'648 2'147'483'647
DWORD	unsigned integer	32	4	0 4'294'967'295
BOOL	signed integer	32	4	TRUE = 1
		53	8	FALSE = 0
HANDLE	pointer to an object	32	4	0 4'294'967'295

Table 2: Data type definitions

Binary representation of floating-point numbers

Floating Point Example

13/19

- Sign=0 (positive)
- Mantissa=1.11₂=1.75₁₀
- Exponent=130-127=3

$$Value = +1.11_2 \times 2^3 = 1.75_{10} \times 8 = 14_{10}$$

Example IEEE-decimal conversion

☐ Let's find the decimal value of the following IEEE number.

- ☐ First convert each individual field to decimal.
 - The sign bit s is 1.
 - The e field contains $011111100 = 124_{10}$.
 - The mantissa is $0.11000... = 0.75_{10}$.
- ☐ Then just plug these decimal values of s, e and f into our formula.

□ This gives us $(1 - 2) * (1 + 0.75) * 2^{124-127} = (-1.75 * 2^{-3}) = -0.21875$.

Binary Game

- 1) Play as long as possible https://basaga.org/basaga_files/binary_game/binary_game.html
- 2) Make a print screen with your final score
- 3) Submit it here (incl. your final score): https://forms.gle/7YRmC4CehbdGBBby7

	Sepal.Length	Sepal.Width
1	5.1	3.5
2	4.9	3.0
3	4.7	3.2

Name: Robin

4 Address: 1234 Main St.

▶ Phone #: 123-4567

Name: Bunny

Species: Rabbit

Breed: Holland Lop

Color: Brown and white

石室诗士施氏, 嗜狮, 誓食十狮。氏 时时适市视狮。十时, 适十狮适市。 是时, 适施氏适市。氏视是十狮, 恃 矢势, 使是十狮逝世。氏拾是十狮尸 , 适石室。石室湿, 氏使侍拭石室。 石室拭, 氏始试食是十狮尸。食时, 始识是十狮, 实十石狮尸。试释是 事。

Tabular Data

Hierarchical Data

Raw Text

Statistics	Programming / Storage	Complexity			
interval scale	Floating point				
ratio scale	Floating-point				
count data					
Ranking	Integer				
Rating data		Basic			
binary data	Boolean				
	String				
catogorical data	Integer (enumerated)				
Text	Boolean (dummied)				
	Character (abbrivieted)				
Text	String				
vector					
Sequence data	List or Array				
matrix	two-dimensional array				
Tensor	n-dimensional array				
Imago	2-dimensional array (compressed)	Arrays			
Image	3-dimensional array (raw)				
Audio	1-dimensional array (compressed)				
Audio	2-dimensional array (raw)				
Audio 1-dii 2-dii	n-dimensional array (visual stream)				
video	2-dimensional array (audio stream)				
tree	tree (data structure)	Hierarchical			

Data processing

by Angel Marchev, Jr.

Data Quality: Why Preprocess the Data?

- ▶ Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Reasons for inaccurate data

- ▶ Data collection instruments may be faulty
- ▶ Human or computer errors occurring at data entry
- Users may purposely submit incorrect data for mandatory fields when they don't want to share personal information
- ▶ Technology limitations such as buffer size
- Incorrect data may also result from inconsistencies in naming conventions or inconsistent formats
- Duplicate tuples also require cleaning

Reasons for incomplete data

- Attributes of interest may not be available
- Other data may not be included as it was not considered imp at the time of entry
- ▶ Relevant data may not be recorded due to misunderstanding or equipment malfunctions
- Inconsistent data may be deleted
- Data history or modifications may be overlooked
- Missing data

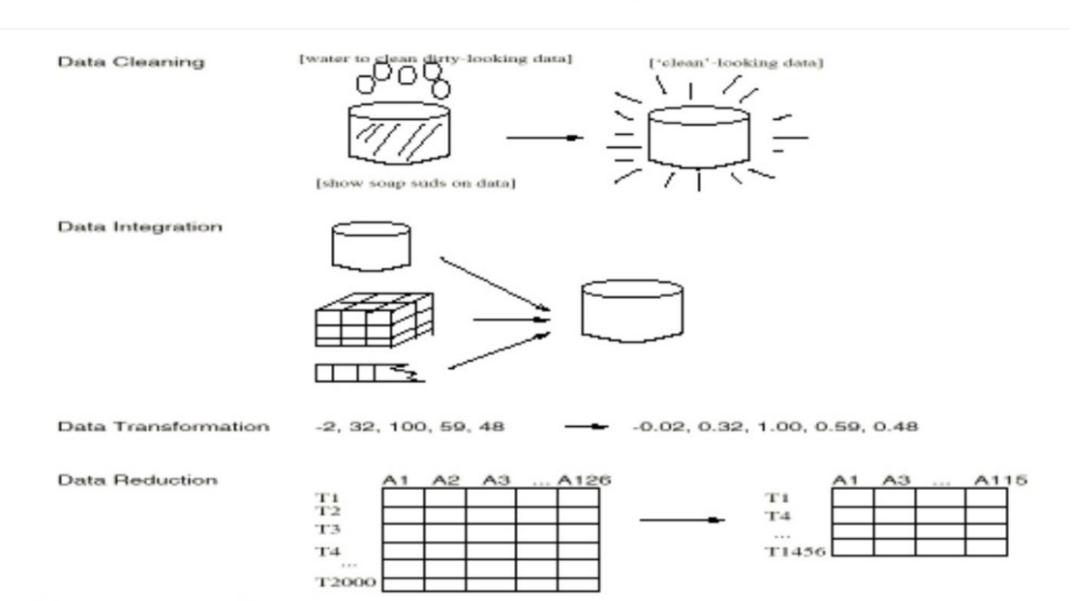
Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files


Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Forms of Data Preprocessing

Why Is Data Dirty?

- Incomplete data may come from
 - "Not applicable" data value when collected
 - Different considerations between the time when the data was collected and when it is analyzed.
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources
 - Functional dependency violation (e.g., modify some linked data)
- Duplicate records also need data cleaning

Data Cleaning

- ▶ Data in the Real World Is Dirty:- Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation* = "" (missing data
 - **noisy**: containing noise, errors, or outliers
 - e.g., Salary = "-10" (an error)
 - o inconsistent: containing discrepancies in codes or names, e.g.,
 - Age = "42", Birthday = "03/07/2010"
 - · Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - <u>Intentional</u>(e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Data Cleaning

- Importance
 - "Data cleaning is one of the three biggest problems in data warehousing"—Ralph Kimball
 - "Data cleaning is the number one problem in data warehousing"—DCI survey
- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data
 - Resolve redundancy caused by data integration

Incomplete (Missing) Data

- ▶ Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

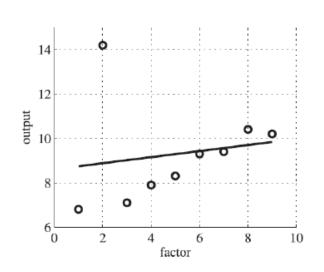
- ▶ Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class:
 smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

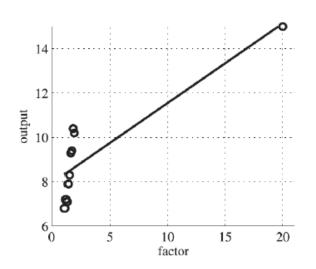
Noisy Data

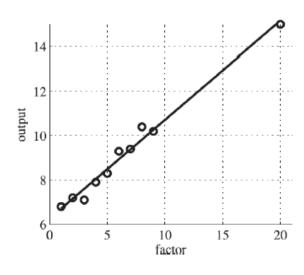
- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

Binning

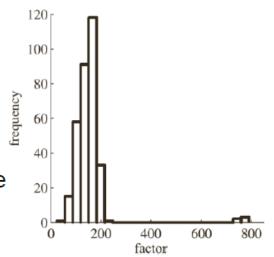

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.


Regression


- smooth by fitting the data into regression functions
- Outlier Analysis by Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

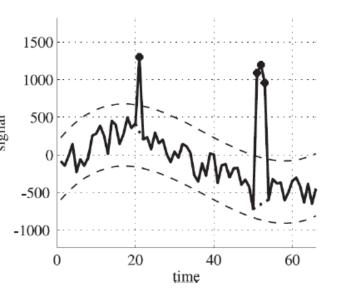
Data Preparation / Data Cleaning

- Outliers
 - Effect on the model
 - Wrong conclusions



Outliers Detection & Manipulation

• Capping replace $x \ge p_{95}$ with p_{95} p_{95} = 95-th percentile



• Time-series
Low frequency component: $x_{t,k} = \text{low-pas-filter}(x_k)$

 $\tilde{x}_k = x_k - x_{t,k}$

Sleeve

$$x_{l,k} = x_{t,k} - n\sigma_{\tilde{x}}$$

$$x_{u,k} = x_{t,k} + n\sigma_{\tilde{x}}$$

Data Transformation

- Smoothing: remove noise from data
- · Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones

Discretization

- Three types of attributes:
 - Nominal values from an unordered set, e.g., color, profession
 - Ordinal values from an ordered set, e.g., military or academic rank
 - Continuous real numbers, e.g., integer or real numbers
- Discretization:
 - Divide the range of a continuous attribute into intervals
 - Some classification algorithms only accept categorical attributes.
 - Reduce data size by discretization
 - Prepare for further analysis

Data Preparation / Pre-processing

Encoding

- categorical → numeric
- Dummy variables
- Dependent mean (y numeric)

$$\tilde{\varphi}_i = \bar{y}_i = 1/N_i \sum_{k,xk=xi} y_k$$

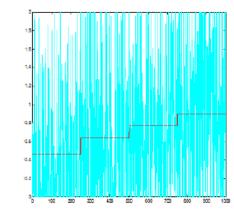
 $x_i - i$ -th unique value

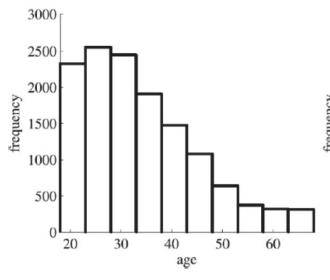
Weight of evidence (y – binary)

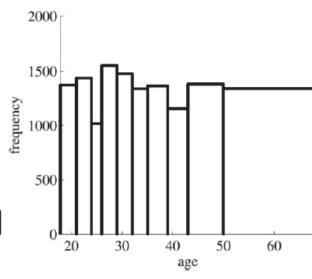
$$\tilde{\varphi}_i = \text{WoE}_i = \log((n_{i,1}/N_1) / (n_{i,2}/N_2))$$

week	promotion type	dv1	dv2	dv3
1	promo 2	0	1	0
2	promo 1	1	0	0
3	promo 1	1	0	0
4	promo 3	0	0	1
5	promo 3	0	0	1
6	promo 1	1	0	0
7	promo 1	1	0	0
8	promo 2	0	1	0
9	promo 2	0	1	0
10	promo 3	0	0	1

Data Preparation / Pre-processing


Binning

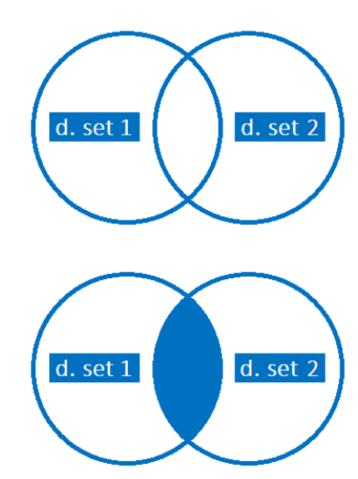

- numeric / categorical → categorical
- Applications:


uncertainty reduction finding на relations account for business logic avoid outliers effect

Approaches

unsupervised binning
equal number of records
equal ranges
supervised binning
Chi Square, Entropy Gain, Gini...

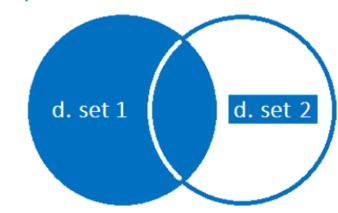
Data Integration


- Data integration:
 - Combines data from multiple sources into a coherent store
- - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

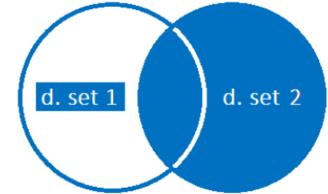
Data Preparation / Data Manipulation

```
- Load Data
    df1, df2 ← load('data_DManip/data.Rdata')

- data.table
    dt1 <- data.table(df1, key = 'id')
    dt2 <- data.table(df2, key = 'ucc')


- Inner Join
    dt <- merge(dt1, dt2, by.x = 'id', by.y = 'ucc')</pre>
```


Data Preparation / Data Manipulation

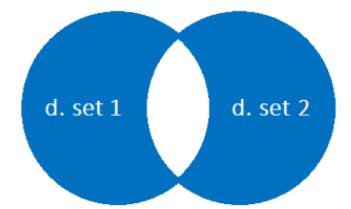

Left Outer Join

```
dt <- merge(dt1, dt2, by.x = 'id', by.y = 'ucc', all.x = T)
# alternative
dt <- dt2[dt1]</pre>
```


Right Outer Join

```
dt <- merge(dt1, dt2, by.x = 'id', by.y = 'ucc', all.y = T)
# alternative
dt <- dt1[dt2]</pre>
```


Data Preparation / Data Manipulation


Full Outer Join

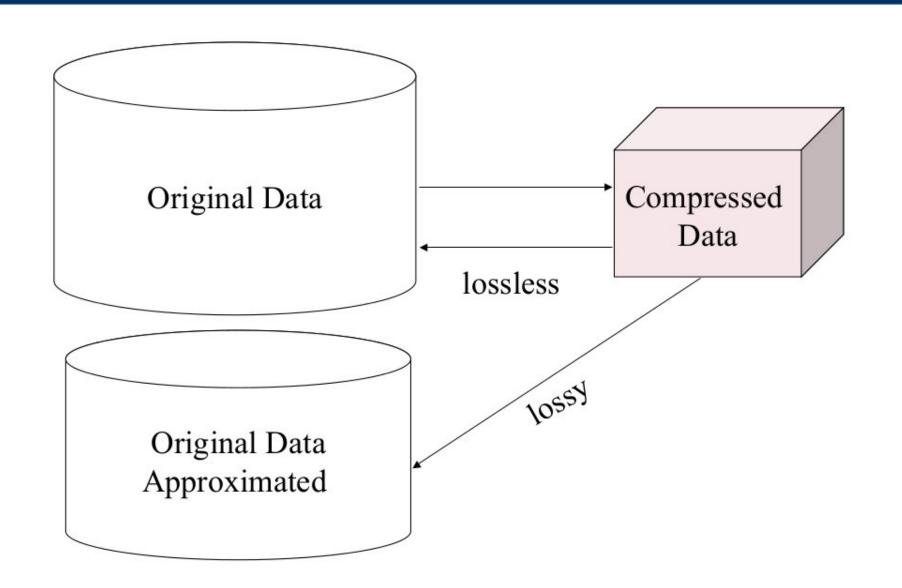
```
dt \leftarrow merge(dt1, dt2, by.x = 'id', by.y = 'ucc', all = T)
```

NOT Inner Join

```
dt <- merge(dt1, dt2, by.x = 'id', by.y = 'ucc', all = T)
dt[is.na(name) | is.na(ctype)]</pre>
```

d. set 1 d. set 2

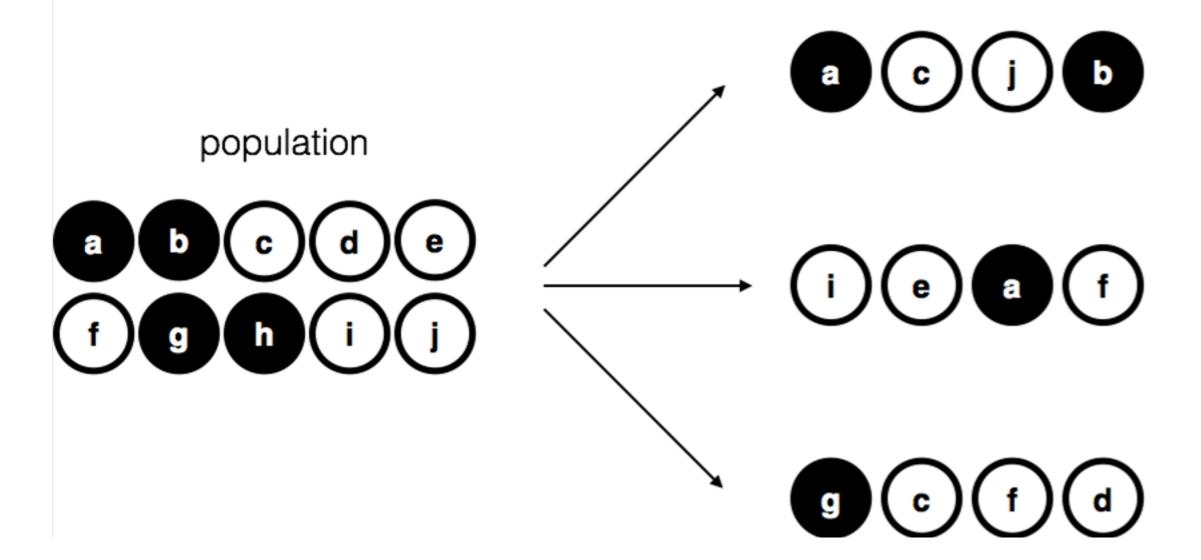
Mapping

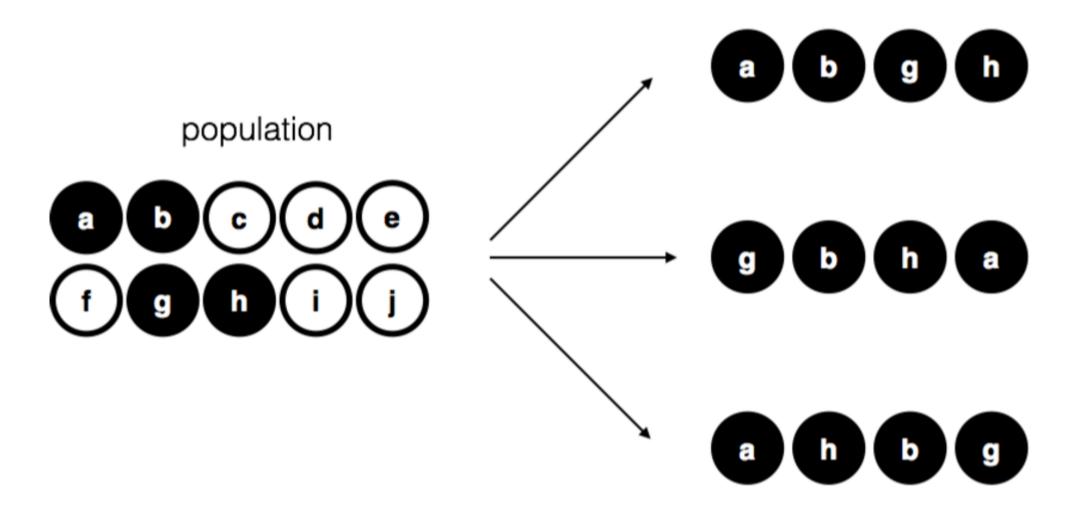

Data Reduction Strategies

- Why data reduction?
 - A database/data warehouse may store terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results
- Data reduction strategies
 - Data cube aggregation:
 - Dimensionality reduction e.g., remove unimportant attributes
 - Data Compression
 - Numerosity reduction e.g., fit data into models
 - Discretization and concept hierarchy generation

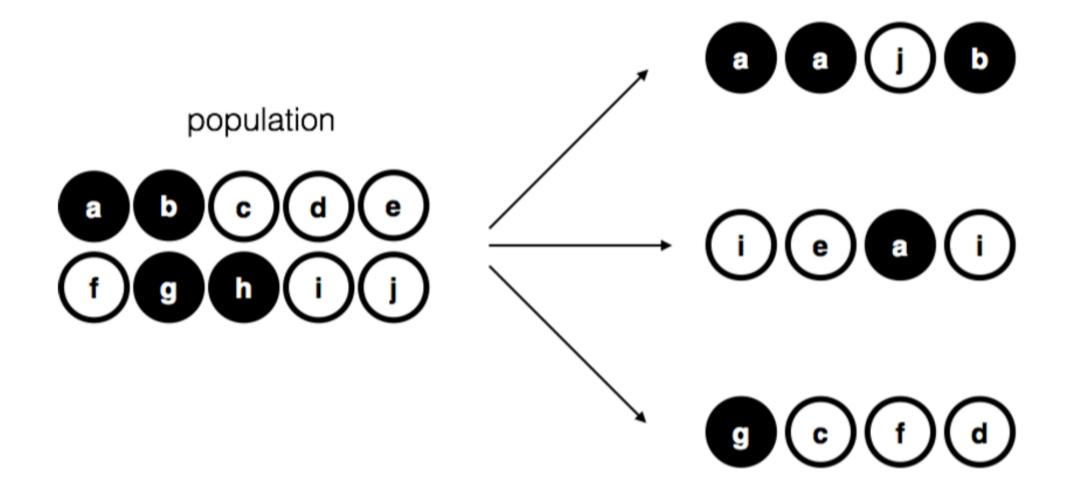
Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless
 - But only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically short and vary slowly with time

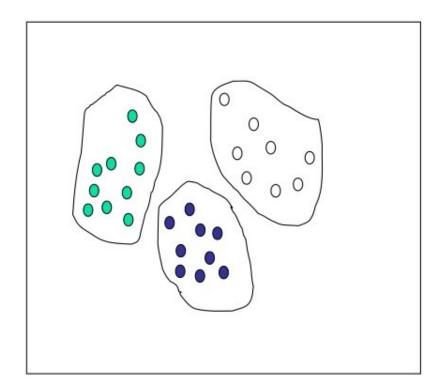

Data Compression


Data Reduction Method (4): Sampling

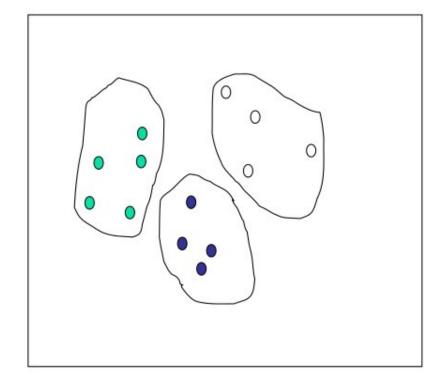
- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
- Develop adaptive sampling methods
 - Stratified sampling:
 - Approximate the percentage of each class (or subpopulation of interest) in the overall database
 - · Used in conjunction with skewed data
- Note: Sampling may not reduce database I/Os (page at a time)


simple random samples (without replacement)

biased sampling (without replacement)



simple random samples (with replacement)



Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

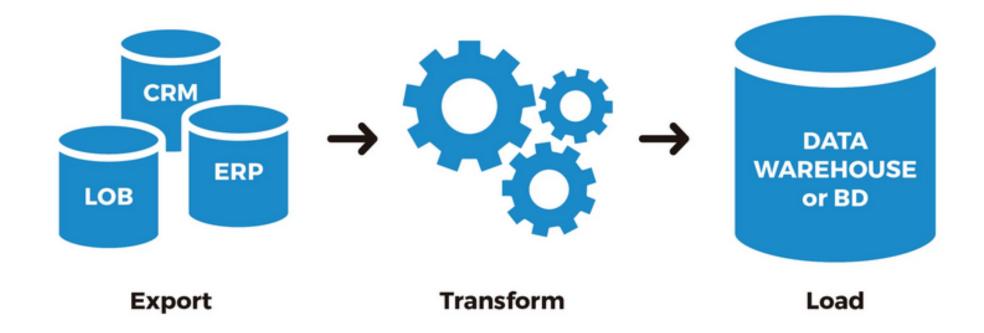
Sampling size

$$S = \frac{Z^{2}.p.(1-p).N}{N.c^{2} + Z^{2}.p.(1-p)}$$

S - размер на извадката

Z - стойност Z (1.96 при допускане за 95% доверителност)

р - вероятност за съвкупността (допуснете че е 0.5)


с - допустима грешка (нормално 5%)

N - размер на генералната съвкупност

		Re	quired S	sample S	ize'			
Confidence = 95%					Confidence = 99%			
Population Size	Margin of Error			Margin of Error				
	5.0%	3.5%	2.5%	1.0%	5.0%	3.5%	2.5%	1.0%
10	10	10	10	10	10	10	10	10
20	19	20	20	20	19	20	20	20
30	28	29	29	30	29	29	30	30
50	44	47	48	50	47	48	49	50
75	63	69	72	74	67	71	73	7
100	80	89	94	99	87	93	96	99
150	108	126	137	148	122	135	142	149
200	132	160	177	196	154	174	186	198
250	152	190	215	244	182	211	229	246
300	169	217	251	291	207	246	270	29
400	196	265	318	384	250	309	348	39
500	217	306	377	475	285	365	421	48
600	234	340	432	565	315	416	490	57
700	248	370	481	653	341	462	554	67
800	260	396	526	739	363	503	615	763
1,000	278	440	606	906	399	575	727	943
1,200	291	474	674	1067	427	636	827	1119
1,500	306	515	759	1297	460	712	959	1376
2,000	322	563	869	1655	498	808	1141	178
2,500	333	597	952	1984	524	879	1288	217
3,500	346	641	1068	2565	558	977	1510	289
5,000	357	678	1176	3288	586	1066	1734	384
7,500	365	710	1275	4211	610	1147	1960	516
10,000	370	727	1332	4899	622	1193	2098	623
25,000	378	760	1448	6939	646	1285	2399	997
50,000	381	772	1491	8056	655	1318	2520	1245
75,000	382	776	1506	8514	658	1330	2563	1358
100,000	383	778	1513	8762	659	1336	2585	1422
250,000	384	782	1527	9248	662	1347	2626	1555
500,000	384	783	1532	9423	663	1350	2640	1605
1,000,000	384	783	1534	9512	663	1352	2647	1631
2,500,000	384	784	1536	9567	663	1353	2651	1647
10,000,000	384	784	1536	9594	663	1354	2653	1656
100,000,000	384	784	1537	9603	663	1354	2654	1658
300,000,000	384	784	1537	9603	663	1354	2654	16586

[†] Copyright, The Research Advisors (2006). All rights reserved.

What Is an ETL Process?

Briefly explained, an ETL process (Extract, Transform, Load) is a system that allows organizations to **move data from multiple sources** (ERP, CRM, Excel, Open Data, Internet Of Things, Social Networks ...) to integrate them into a single place, which could be a database, a data warehouse, and so on.

Data cleaning task

- 1) Do the task
- 2) Save the file
- 3) Submit it here (incl. your answers): https://forms.gle/7YRmC4CehbdGBBby7