SQL

Intermediate

e DISTINCT

e CASE

e GROUP BY

e HAVING

e DATE

SQL CLAUSES Wrap UP

e SELECT

e ORDERBY

o LIMIT

e WHERE

e Comparison Operators
e IN

e LIKE

e BETWEEN

e |ISNULL/NOT NULL

DISTINCT

CASE

GROUP BY

Aggregation Functions (MIN,
MAX, SUM, AVG, COUNT)
HAVING

DATE()

SQL Intermediate: DISTINCT

SELECT DISTINCT select_list

FROM table;

e The DISTINCT clause allows you to remove the duplicate rows in the result set.

o SELECT DISTINCT (*)

o SELECT DISTINCT(column1)

o SELECT COUNT (DISTINCT column1)
o SELECT COUNT (DISTINCT *)

SQL Intermediate: CASE

CASE expression evaluates a list of conditions and returns an expression based on the

result of the evaluation.

he CASE expression is similar to the IF-THEN-ELSE statement in other programming

languages.

CASE case_expression
WHEN when_expression_1 THEN result_1

WHEN when_expression_2 THEN result_2

[ELSE result_else]

END

SQL Intermediate: CASE

e |n case no case_expression matches the when_expression, the CASE expression returns
the result_else in the ELSE clause. If you omit the ELSE clause, the CASE expression
returns NULL.

SQL Intermediate: GROUP BY

The GROUP BY clause a selected group of rows into summary rows by values of one or
more columns.

For each group, you can apply an aggregate function such as MIN, MAX, SUM, COUNT, or
AVG to provide more information about each group.

SELECT
column_1,
aggregate_function(column_2)
FROM
table
GROUP BY
column_1,

column_2;

SQL Intermediate: GROUP BY

The GROUP BY clause comes after the FROM clause of the SELECT statement. In case a
statement contains a WHERE clause, the GROUP BY clause must come after the WHERE
clause.

Following the GROUP BY clause is a column or a list of comma-separated columns used to

specify the group.

SQL

Intermediate

e DISTINCT

e CASE

e GROUP BY

e DATE

e HAVING

SQL Intermediate: DATE, DATETIME

Example
2010-12-30

2010-12-30 12:10

2010-12-30 12:10:04.100

30-12-2010 12:10
12:10
2010-12-30 12:10
12:10:01

20101230 121001

Time Strings

A time string can be in any of the following formats -
Sr.No. Time String
1 YYYY-MM-DD
2 YYYY-MM-DD HH:MM
3 YYYY-MM-DD

HH:MM:SS.SSS

4 MM-DD-YYYY HH:MM
5 HH:MM
6 YYYY-MM-DDTHH:MM
7 HH:MM:SS
8 YYYYMMDD HHMMSS
9 now

2013-05-07

SQL Intermediate: DATE, DATETIME

e The date and time functions use a subset of IS0-8601 date and time formats.

e The date() function returns the date in this format: YYYY-MM-DD. The time() function
returns the time as HH:MM:SS.

e The datetime() function returns "YYYY-MM-DD HH:MM:SS".

e The julianday() function returns the Julian day - the number of days since noon in
Greenwich on November 24, 4714 B.C. (Proleptic Gregorian calendar).

e The strftime() routine returns the date formatted according to the format string specified

as the first argument

SQL Intermediate: DATE, DATETIME

SQLite does not support built-in date and/or time storage class. Instead, it leverages some

built-in date and time functions to use other storage classes such as TEXT, REAL, or

INTEGER for storing the date and time values.

Function
date(...)
time(...)
datetime(...)
julianday(...)

Equivalent strftime()
stritime('%Y-%m-%d’, ...)
stritime('%H:%M:%S’, ...)
stritime('%Y-%m-%d %H:%M:%S’, ...)
stritime('%J', ...)

SQL Intermediate: DATE, DATETIME

%d
%f
%H
%]
%]
% m
%M
%s
%S
% w
%W
%Y
% %

day of month: 00
fractional seconds: SS.SSS
hour: 00-24

day of year: 001-366
Julian day number

month: 01-12

minute: 00-59

seconds since 1970-01-01
seconds: 00-59

day of week 0-6 with Sunday==

week of year: 00-53
year: 0000-9999
%

SQL Intermediate: HAVING

e The HAVING clause specifies a search condition for a group.

e You often use the HAVING clause with the GROUP BY clause. The GROUP BY clause groups
a set of rows into a set of summary rows or groups. Then the HAVING clause filters groups
based on a specified condition.

e If you use the HAVING clause, you must include the GROUP BY clause; otherwise, you will

get the following error:

Error: a GROUP BY clause is required before HAVING

e Note: that the HAVING clause is applied after GROUP BY clause, whereas the WHERE
clause is applied before the GROUP BY clause.

SQL Intermediate: SUBQUERY - chain type

e Subquery - chain type: SELECT statement inside another SELECT statement
SELECT column1, column 2
FROM (
SELECT columnA, columnB
FROM table)

SQL Intermediate: SUBQUERY - WITH

e Subquery - WITH: creates a table in the query memory
WITH tablename AS

(SELECT column
FROM table)

SELECT column1
FROM tablename

SQL Intermediate: CREATE

e CREATE clause is used to create and record new table
e If the table already exists it should be deleted using DROP first before it can be created

again with a same name.

DROP TABLE newcust;

CREATE TABLE newcust AS
SELECT

*
FROM

Customers

