SQL

Advanced

INNER JOIN

LEFT JOIN

RIGHT JOIN

FULL OUTER JOIN

CROSS JOIN

UNION

Objective

Be able to provide answer to meaningful questions by connecting the
information between separate tables using JOIN clauses:

- Understand difference between different JOIN queries;

- Learn the JOIN query syntax;

- Be able to select which JOIN query is appropriate;

- Learn to combine information from different tables;

- Be able to combine JOIN, condition and aggregation functions in one query

SQL Advanced: Types of JOINS

INNER_IOIN LEFT JOIN RIGHT JOIN OUTER JOIN

or JOIN) (with UNION)

*“» e e @

CROSS JOIN

*SQLite doesn't directly support the RIGHT JOIN and FULL OUTER JOIN

https://joins.spathon.com/

https://joins.spathon.com/

SQL Advanced: Types of Relationship

e One-to-one relationship
e One-to-many relationship (or many-to-one)
e Many-to-many relationship

SQL Advanced: Types of Relationship: One-to-one

e In a one-to-one relationship, one record in a table is associated with one and only one
record in another table.

e For example, in a school database, each student has only one student ID, and each student
ID is assigned to only one person.

‘aStudents =] »Contact Info =]
- Student ID o fe—e] =} |+ Student ID

Student 1D Student 1D

Last Name City

First Name Phone

SQL Advanced: Types of Relationship: One-to-many

e In a one-to-many relationship, one record in a table can be associated with one or more
records in another table.
But one record from a second table is associated to a single record from the first table
e For example, each customer can have many sales orders.

Customers table Orders table
Customer ID 12345 Order ID | B204 |
Name | Tang Customer ID | 12345 [
aCustomers 8| 2Orders Ll
ID [B391
| Customer ID o ——{=}—<€ < Customer ID \ Lol |
riD (12345
Customer ID Order ID
Name Customer 1D ID 'B448

Customer ID 12345

SQL Advanced: Types of Relationship: Many-to-many

e A many-to-many relationship occurs when multiple records in a table are associated with
multiple records in another table.

e For example, a many-to-many relationship exists between customers and products:
customers can purchase various products, and products can be purchased by many
customers.

e Inrelational databases many-to-many relationship is usually represented by two
one-to-many relationships by using a third table.

e Eachrecord in a join table includes a match field that contains the value of the primary
keys of the two tables it joins. (In the join table, these match fields are foreign keys.) These
foreign key fields are populated with data as records in the join table are created from
either table it joins.

SQL Advanced: Types of Relationship: Many-to-many

Another typical example - students and classes: a student can register for many classes,

and a class can include many students.

Primary key

»Students

| Student ID

Student ID
Last Name
First Name

Foreign keys

»Enroliments

——{=}—<€ +Student

Class ID

ID

Student
Class ID

Enrollment ID

0

Join table

Primary key
»Classes 8
= \+Class ID’
Class ID
Title
Description

SQL Advanced: BROKERAGE DATASET - Types of Relationships

£ PortfolioAmounts

B8 Customers Column

Column B M AmountPosition REAL

M CustomerlD INTEGER <+———» M) CustomerlD INTEGER

(T Customer INTEGER = (T] PortfolioPositionsID INTEGER

&8 AccountManagers .
A M CustomerEmail TEXT
Column (1] CustomerSince TEXT
(1] AccountManagerID INTEGER [T AccountManagerID INTEGER C | B2 PortfolioPositions
T AccountManager TEXT M CountryResidence TEXT
Column
T AccountManagerPhone TEXT [T CustomerClass TEXT
L =

(M AccountManager TEXT M PortfolioPositionsID INTEGER

M AccountManagerPhone TEXT [0 PortfolioPosition TEXT

[T) PermitiDNeed TEXT T PositionType TEXT
[T CustomerAge INTEGER [T] StockType TEXT

SQL Advanced: Demo dataset

e Artists and albums tables: an artist can have zero or many albums while an album belongs
to one artist.

albums

artists
* Albumld Artiotid
15
Title BE—t "
ame
Artistld

SQL Advanced: INNER JOIN (JOIN) @)

e INNER JOIN or JOIN returns records that match in BOTH right and left tables.
INNER JOIN clause matches each row from the albums table with every row from the
artists table based on the join condition (artists.Artistld = albums.Artistld) specified after

the ON keyword.
SELECT

Title,
Name
FROM
albums
INNER JOIN artists
ON artists.ArtistId = albums.ArtistId;

SQL Advanced: INNER JOIN (JOIN) - aliases @

e This query uses table aliases (I for the albums table and r for artists table) to shorten the
query:

SELECT

1. Title,

LName Table aliases
FROM /

albums 1
INNER JOIN artists r ON

r.Artistid = 1.Artistid;

SQL Advanced: INNER JOIN (JOIN) - USING syntax

e In case the column names of joined tables are the same e.g., Artistld, you can use the
USING syntax
e The clause USING(Artistld) is equivalent to the clause ON artists.Artistld = albums.Artistld

SELECT
Title,
Name

FROM
albums

INNER JOIN artists USING(ArtistId);

SQL Advanced: JOIN pitfalls

»Run & Share &Export ¥ & Impo

SqlLite.js
& & SQlite # task8 Joi ambiguous column name: accountmanagerid
SELECT CustomerID, Customer, accountmanager, accountmanagerid

FROM Customers
JOIN AccountManagers

ON Customers.accountmanagerid = AccountManagers.accountmanagerid

SQL Advanced: JOIN pitfalls

»Run & Share &Export~ X Impo

SqlLite.js
& & SQlite # task8 Joi ambiguous column name: accountmanagerid
SELECT CustomerID, Customer, accountmanager, accountmanagerid

FROM Customers

JOIN AccountManagers

ON Customers.accountmanagerid = AccountManagers.accountmanagerid

Because both Customers and Account Managers have same columnname query returns an error:
>> SOLUTION 1: use USING syntax
>> SOLUTION 2: use aliases

SQL Advanced: LEFT JOIN (LEFT OUTER JOIN) Q

e The left join returns all rows from the left table and the matching rows from the right table
e If arow from the left table doesn’t have a matching row in the right table, SQLite includes
columns of the rows in the left table and NULL for the columns of the right table..

e Similar to the INNER JOIN clause, you can use the USING syntax for the join condition

SELECT
Name,
Title

FROM

artists

LEFT JOINJalbums ON

artists.ArtistId = albums.ArtistId

ORDER BY Name;

SQL Advanced: LEFT JOIN (LEFT OUTER JOIN)

e LEFT JOIN clause selects data starting from the left table (artists) and matching rows in
the right table (albums) based on the join condition (artists.Artistld = albums.Artistld)

e Where there is more than one match the left table record is duplicated!

Artists: Albums:
Name T3 Title — | ¢
A Cor Do Som [NULL] no maten
AC/DC For Those About To Rock We Salute You
acpie s mereithan;-malah Let There Be Rock
Aaron Copland & London Symphony Orchestra A Copland Celebration, Vol. |
Aaron Goldberg Worlds

Academy of St. Martin in the Fields & Sir Neville Marriner The World of Classical Favourites
Academy of St. Martin in the Fields Chamber Ensemble & Sir Neville Marriner: A Celebration
Academy of St. Martin in the Fields, John Birch, Sir Neville Fauré: Requiem, Ravel: Pavane & Others
Academy of St. Martin in the Fields, Sir Neville Marriner & Bach: Orchestral Suites Nos. 1 -4
Academy of St. Martin in the Fields, Sir Neville Marriner & I [NULL] no match

Accept more than 1 match Balls to the Wall

Accept Restless and Wild

Adrian Leaper & Doreen de Feis Gérecki: Symphony No. 3

SQL Advanced: LEFT JOIN (LEFT OUTER JOIN) Q)

e If you want to find artists who don't have any albums, you can add a WHERE clause as

shown in the following query

SELECT
Name,
Title
FROM
artists
LEFT JOIN albums ON
artists.ArtistId = albums.ArtistId

WHERE Title IS NULL

ORDER BY Name;

SQL Advanced: RIGHT JOIN (RIGHT OUTER JOIN)

e RIGHT JOIN is not supported in SQLite

e We can get same results just by switching the places of the right and left tables

>> What will be the output result in our demo _artist and _album case?

SQL Advanced: JOIN + GROUP BY, WHERE, ORDER BY Q)

e Which artist has the biggest number of albums?
e How many albums does he have? Who is on the first and second place?

e How many artists don't have any albums?

SQL Advanced: JOIN

Rule of Thumb - Operations over JOINED tabled
1. Think which table should be on the LEFT side if using LEFT JOIN.
2. Will you lose some records?
3. Test the query step-by-step:
a. Check first if the join is implemented correctly
b. Addthe WHERE clause
c. Start aggregating if needed

SQL Advanced: Multiple JOINS

Syntax:
SELECT ...
FROM ...
LEFT JOIN ...

LEFT JOIN
ON ... = ...

Question: JOIN other information to PortfolioPositions

Do we have all customers listed?

SQL Advanced: BROKERAGE DATASET

£ PortfolioAmounts

£ Customers Column
Column ?% M AmountPosition REAL
M CustomerlD INTEGER <+———» M) CustomerlD INTEGER
(T Customer INTEGER = (T] PortfolioPositionsID INTEGER

&8 AccountManagers
M CustomerEmail TEXT

100%
Column M CustomerSince TEXT
?% . .
(1) AccountManagerlD INTEGER <—— [T] AccountManagerlD INTEGER s B2 PortfolioPositions
T AccountManager TEXT M CountryResidence TEXT
Column
T AccountManagerPhone TEXT [T CustomerClass TEXT

(M AccountManager TEXT M PortfolioPositionsID INTEGER

M AccountManagerPhone TEXT [0 PortfolioPosition TEXT

[T) PermitiDNeed TEXT T PositionType TEXT
[T CustomerAge INTEGER [T] StockType TEXT

SQL Advanced: FULL OUTER JOIN .

e The result of the FULL OUTER JOIN is a combination of a LEFT JOIN and a RIGHT JOIN.

e Theresult set of the full outer join has NULL values for every column of the table that does
not have a matching row in the other table.

e For the matching rows, the FULL OUTER JOIN produces a single row with values from

columns of the rows in both tables.

>> By combining LEFT JOIN and UNION we can emulate the FULL OUTER JOIN in SQLite.

SQL Advanced: FULL OUTER JOIN - emulation

e Because SQlite does not support the RIGHT JOIN clause, we use the LEFT JOIN clause in
the second SELECT statement instead and switch the positions of the tables.
e The UNION ALL clause retains the duplicate rows from the result sets of both queries.

e The DISTINCT clause removes rows that are duplicated

SQL Advanced: CROSS JOIN .

e If youuse a LEFT JOIN, INNER JOIN, or CROSS JOIN without the ON or USING clause,
SQLite produces the Cartesian product of the involved tables. The number of rows in the

Cartesian product is the product of the number of rows in each involved tables.

SELECT *
FROM A JOIN B;

SELECT 2
FROM A

INNER JOIN B;

SEVECT*
FROM A

CROSS JOIN B;

SELECT *
FROM A, B;

Contacts:

www.linkedin.com/in/sergeyvichev/

vichev.sergey@gmail.com

THANK YOU

http://www.linkedin.com/in/sergeyvichev/

