
SQL
Advanced

● INNER JOIN

● LEFT JOIN

● RIGHT JOIN

● FULL OUTER JOIN

● CROSS JOIN

● UNION

Objective

Be able to provide answer to meaningful questions by connecting the
information between separate tables using JOIN clauses:

- Understand difference between different JOIN queries;
- Learn the JOIN query syntax;
- Be able to select which JOIN query is appropriate;
- Learn to combine information from different tables;
- Be able to combine JOIN, condition and aggregation functions in one query

SQL Advanced: Types of JOINS

CROSS JOIN

*SQLite doesn’t directly support the RIGHT JOIN and FULL OUTER JOIN

https://joins.spathon.com/

https://joins.spathon.com/

SQL Advanced: Types of Relationship

● One-to-one relationship
● One-to-many relationship (or many-to-one)
● Many-to-many relationship

SQL Advanced: Types of Relationship: One-to-one

● In a one-to-one relationship, one record in a table is associated with one and only one
record in another table.

● For example, in a school database, each student has only one student ID, and each student
ID is assigned to only one person.

SQL Advanced: Types of Relationship: One-to-many

● In a one-to-many relationship, one record in a table can be associated with one or more
records in another table.

● But one record from a second table is associated to a single record from the first table
● For example, each customer can have many sales orders.

SQL Advanced: Types of Relationship: Many-to-many

● A many-to-many relationship occurs when multiple records in a table are associated with
multiple records in another table.

● For example, a many-to-many relationship exists between customers and products:
customers can purchase various products, and products can be purchased by many
customers.

● In relational databases many-to-many relationship is usually represented by two
one-to-many relationships by using a third table.

● Each record in a join table includes a match field that contains the value of the primary
keys of the two tables it joins. (In the join table, these match fields are foreign keys.) These
foreign key fields are populated with data as records in the join table are created from
either table it joins.

SQL Advanced: Types of Relationship: Many-to-many

● Another typical example - students and classes: a student can register for many classes,
and a class can include many students.

SQL Advanced: BROKERAGE DATASET - Types of Relationships

A

B

C

D

SQL Advanced: Demo dataset

● Artists and albums tables: an artist can have zero or many albums while an album belongs
to one artist.

SQL Advanced: INNER JOIN (JOIN)

● INNER JOIN or JOIN returns records that match in BOTH right and left tables.
● INNER JOIN clause matches each row from the albums table with every row from the

artists table based on the join condition (artists.ArtistId = albums.ArtistId) specified after
the ON keyword.

SQL Advanced: INNER JOIN (JOIN) - aliases

● This query uses table aliases (l for the albums table and r for artists table) to shorten the
query:

SQL Advanced: INNER JOIN (JOIN) - USING syntax

● In case the column names of joined tables are the same e.g., ArtistId, you can use the
USING syntax

● The clause USING(ArtistId) is equivalent to the clause ON artists.ArtistId = albums.ArtistId

SQL Advanced: JOIN pitfalls

SQL Advanced: JOIN pitfalls

Because both Customers and Account Managers have same columnname query returns an error:
>> SOLUTION 1: use USING syntax
>> SOLUTION 2: use aliases

SQL Advanced: LEFT JOIN (LEFT OUTER JOIN)

● The left join returns all rows from the left table and the matching rows from the right table

● If a row from the left table doesn’t have a matching row in the right table, SQLite includes

columns of the rows in the left table and NULL for the columns of the right table..

● Similar to the INNER JOIN clause, you can use the USING syntax for the join condition

SQL Advanced: LEFT JOIN (LEFT OUTER JOIN)

● LEFT JOIN clause selects data starting from the left table (artists) and matching rows in

the right table (albums) based on the join condition (artists.ArtistId = albums.ArtistId)

● Where there is more than one match the left table record is duplicated!

SQL Advanced: LEFT JOIN (LEFT OUTER JOIN)

● If you want to find artists who don’t have any albums, you can add a WHERE clause as

shown in the following query

SQL Advanced: RIGHT JOIN (RIGHT OUTER JOIN)

● RIGHT JOIN is not supported in SQLite

● We can get same results just by switching the places of the right and left tables

>> What will be the output result in our demo _artist and _album case?

SQL Advanced: JOIN + GROUP BY, WHERE, ORDER BY

● Which artist has the biggest number of albums?

● How many albums does he have? Who is on the first and second place?

● How many artists don’t have any albums?

Rule of Thumb - Operations over JOINED tabled

1. Think which table should be on the LEFT side if using LEFT JOIN.

2. Will you lose some records?

3. Test the query step-by-step:

a. Check first if the join is implemented correctly

b. Add the WHERE clause

c. Start aggregating if needed

SQL Advanced: JOIN

Syntax:

SELECT ….

FROM ….

LEFT JOIN …

ON …… = …..

LEFT JOIN ….

ON ….. = …...

Question: JOIN other information to PortfolioPositions

Do we have all customers listed?

SQL Advanced: Multiple JOINS

SQL Advanced: BROKERAGE DATASET

100%

?%

?%

SQL Advanced: FULL OUTER JOIN

● The result of the FULL OUTER JOIN is a combination of a LEFT JOIN and a RIGHT JOIN.

● The result set of the full outer join has NULL values for every column of the table that does

not have a matching row in the other table.

● For the matching rows, the FULL OUTER JOIN produces a single row with values from

columns of the rows in both tables.

>> By combining LEFT JOIN and UNION we can emulate the FULL OUTER JOIN in SQLite.

SQL Advanced: FULL OUTER JOIN - emulation

● Because SQlite does not support the RIGHT JOIN clause, we use the LEFT JOIN clause in

the second SELECT statement instead and switch the positions of the tables.

● The UNION ALL clause retains the duplicate rows from the result sets of both queries.

● The DISTINCT clause removes rows that are duplicated

SQL Advanced: CROSS JOIN

● If you use a LEFT JOIN, INNER JOIN, or CROSS JOIN without the ON or USING clause,

SQLite produces the Cartesian product of the involved tables. The number of rows in the

Cartesian product is the product of the number of rows in each involved tables.

Contacts:

www.linkedin.com/in/sergeyvichev/

vichev.sergey@gmail.com

THANK YOU

http://www.linkedin.com/in/sergeyvichev/

