
SQL
Fundamentals

● SELECT statement

● ORDER BY, LIMIT clauses

● WHERE and Logical Operators

SQL FUNDAMENTALS: SELECT statement

SELECT …. FROM ….

● SELECT * FROM table

● SELECT column name FROM table

● SELECT Column1, Column2, Column3 FROM table

● Comments (-- , /* ….. */)

● Code formatting:

○ Different columns should be separated by comma!

○ The SQL Keywords are case-insensitive (SELECT , FROM , WHERE , etc), but are often

written in all caps as a good practice

○ Usually the column and table name are also case-insensitive

SQL FUNDAMENTALS - Errors

● Getting errors is absolutely OK

● Usually IDE have suggestions of what is the type of error

SQL
Fundamentals

● SELECT statement

● ORDER BY, LIMIT clauses

● WHERE and Logical Operators

SQL FUNDAMENTALS: ORDER BY

● ORDER BY clause is sorting the result based on one or

more columns in different order.

● Column name by which you want to sort after the ORDER

BY clause followed by the ASC or DESC keyword.

○ The ASC keyword means ascending.

○ And the DESC keyword means descending.

● If not specified ASC order is by default

● You can sort the result set using a column that does not

appear in the select list of the SELECT clause.

● Use a comma (,) to separate multiple order columns

SQL FUNDAMENTALS: LIMIT

● The LIMIT clause is an optional part of the SELECT

statement. You use the LIMIT clause to constrain the

number of rows returned by the query.

● We can retrieve 10 rows instead of 1 MLN rows

● The row_count is a positive integer that specifies the

number of rows returned (5, 10, 20, 1000, etc.)

SQL
Fundamentals

● SELECT statement

● ORDER BY, LIMIT clauses

● WHERE and Logical Operators

SQL FUNDAMENTALS: WHERE

● The WHERE clause is an optional clause of the SELECT

statement. It appears after the FROM clause as the

following statement

● When evaluating a SELECT statement with a WHERE

clause, SQLite uses the following steps:

○ First, check the table in the FROM clause.

○ Second, evaluate the conditions in the WHERE clause

to get the rows that met these conditions.

○ Third, make the final result set based on the rows in

the previous step with columns in the SELECT clause.

SQL FUNDAMENTALS: WHERE

For example, you can form a search condition as follows:

● WHERE column_1 = 100;

● WHERE column_2 IN (1,2,3); IN (‘Canada’, ‘UK’); NOT IN (‘Canada’, ‘Bulgaria’)

● WHERE column_3 LIKE 'An%';

● ‘%text%’ (will look for ‘text’ anywhere in the text); NOT LIKE

● WHERE column_4 BETWEEN 10 AND 20;

● WHERE column_5 IS NULL; NOT NULL

● WHERE column_6 <> “”

● Use AND or OR operator for multiple conditions

SQL FUNDAMENTALS: Data Types

IS NULL / IS NOT NULL

=, <, >, <>, etc.

=, <> (use ‘text’ or “text”)
IS CASE-SENSITIVE

=, <, >, <>, etc.

SQL FUNDAMENTALS: SQL Comparison Operators

● A comparison operator tests if two expressions are the same. The following table

illustrates the comparison operators that you can use to construct expressions:

