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These lecture notes are based on:

I the lecture notes on Portfolio Selection by
Prof. Friedmann, University of Saarland

I “The Econometrics of Financial Markets”, Campbell, Lo
and MacKinlay, 1997, Princeton University Press
(Chapter 10)
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Definition

I Fixed-income securities are default-free bonds with payments
that are fully specified in advance.

I fixed-income markets 6= equity markets

I Examples for fixed-income securities include Treasury securities
- bills, notes, bonds (US), Staatsanleihen -
Bundesobligationen/-anleihen (Germany), etc.
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Notation

I Price of a security at time t:

Pt, Pt > 0

I Future payment at time t + i:

Ct+i, i ∈ I ⊆ IN, Ct+i ≥ 0

I Payments take place at discrete times t ∈ IN0

I Length of a time interval from t to t + n (n ∈ IN): n (basis)
periods
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Discrete vs. continuous returns: Discrete returns

If not explicitly specified, returns are based on a single holding period.
The discrete return R of a bond with price Pt > 0 at time t and future
payments Ct+i, i ∈ I ⊆ IN, Ct+i ≥ 0,

∑
i∈I Ct+i > 0, is defined as the

interest rate R, for which the price Pt equals the present value of the
future payments:

Pt =
∑
i∈I

Ct+i

(1 + R)i , R > −1,

Interest payments take place at discrete points of time.
Special case: Discrete return for a single payment at time t + n

1 + R =

(
Ct+n

Pt

) 1
n

and Ct+n = Pt (1 + R)n.
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Discrete vs. continuous returns: Continuous returns

How much is the interest rate xk, which equals the single-period return
1+R, when the interest payments take place pro rata within the period
after 1

k ,
2
k , . . . ,

k−1
k , 1 sub-periods?

(1 +
xk

k
)k = 1 + R

⇔ xk = k((1 + R)
1
k − 1),

e.g. R = 0.21 :

x2 = 0.2, x4 = 0.1952354, x12 = 0.1921424, x365 = 0.1906701.
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Discrete vs. continuous returns: Continuous returns

Continuous return: r

lim
k→∞

(1 +
r
k
)k = 1 + R ⇔ er = 1 + R ⇔ r = ln(1 + R),

e.g. for R = 0.21 : r = ln(1.21) = 0.1906204.

It holds r = ln(1 + R) ≤ R, Equality is reached when R = 0; when
|R| ≈ 0 the difference is minor.

Special case: Continuous return for a single payment at time t + n

r = ln(1 + R) =
1
n
(ln Ct+n − ln Pt) and Ct+n = Pt enr.
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Discrete vs. continuous returns: one period returns

Special case:

Discrete and continuous one-period return at time t + 1 (no additional
payment - buy at Pt, sell at Pt+1 = Ct+1):

Rt+1 =
Pt+1

Pt
− 1 =

Pt+1 − Pt

Pt
.

rt+1 = ln(1 + Rt+1) = ln
(

Pt+1

Pt

)
= ln Pt+1 − ln Pt.
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Multiple-period returns over k periods

Discrete return Rt(k) and continuous return rt(k):

1 + Rt(k) =
Pt

Pt−k

rt(k) = ln(1 + Rt(k)) = ln
(

Pt

Pt−k

)
= ln Pt − ln Pt−k

with

1 + Rt(k) =
k−1∏
i=0

(1 + Rt−i)

rt(k) =

k−1∑
i=0

rt−i.
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Comparison of returns for different period lengths

Annualisation:
(Example: daily return Rt resp. rt, 5 trading days per week, 250 trading
days p.a.)
Assumption: Daily resp. weekly returns are constant over the period
(a week resp. an year)

Discrete returns
Daily return Rt annualized with: (1 + Rt)

250 − 1
Weekly return Rt(5) annualized with: (1 + Rt(5))52 − 1

Continuous returns
Daily return rt annualized with: 250 rt

Weekly return rt(5) annualized with: 52 rt(5)
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Definition

Zero-coupon bonds, also called discount bonds, make a single pay-
ment at a date in the future known as maturity date.

The size of the payment is the face value of the bond. For convenience
in the following we assume that the face value is always 1 monetary
unit (say EURO).

The length of time until maturity is the maturity of the bond.

An example for a zero-coupon bond are US Treasury bills.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 16
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Yield to maturity

Length of time from today (t) until maturity (t + n): maturity n

Payment at t (Price): Pnt

Payment at t + n (face value): P0,t+n = 1 EURO

Yield to maturity: Ynt = ( 1
Pnt

)
1
n − 1 with Pnt =

1
(1+Ynt)n

log yield: ynt = ln(1 + Ynt) with ln Pnt = −nynt

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 17



U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Properties

Elasticity of a variable B with respect to a variable A is defined
to be the derivative of B with repect to A, times A/B:

dB
dA
· A

B

Equivalently, it is the derivative of lnB with respect to lnA.

Elasticity of the price with respect to the yield (maturity n)

−n =
d ln Pnt

d ln(1 + Ynt)
, i.e.

dPnt

Pnt
= −n

dYnt

1 + Ynt
≈ −n · dYnt

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 18
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Yield spread and term structure

Yield spread: Snt = Ynt − Y1t resp. snt = ynt − y1t.

Term structure of interest rates at t: Ynt (or ynt) as a function
of n

Yield curve (plot of the term structure):

“normal yield curve”: upward sloping,
“ inverse yield curve”: downward sloping.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 19
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Discount bonds: holding-period returns

The holding-period return on a bond is the return over some
holding period less than the bond’s maturity.

For convenience, the holding-period is set to a single period.

In that way, the discrete return Rn,t+1 is given through the price
change of an n−period bond purchased at time t at price Pnt and
sold at time t + 1 at price Pn−1,t+1:

1 + Rn,t+1 =
Pn−1,t+1

Pnt
=

(1 + Ynt)
n

(1 + Yn−1,t+1)n−1

resp. for the continuous holding-period return:

rn,t+1 = ln Pn−1,t+1 − ln Pnt = ynt − (n− 1)(yn−1,t+1 − ynt).

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 20
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Properties

The excess return rn,t+1−y1t depends on the spread snt and the change
in the yield over the holding period:

rn,t+1 − y1t = snt − (n− 1)(yn−1,t+1 − ynt)

It holds: ynt =
1
n

n−1∑
i=0

rn−i,t+i+1 (average holding-period return),

due to the compensation of purchasing and selling activities,

n−1∑
i=0

rn−i,t+i+1 = ln P0,t+n − ln Pnt = ln 1 + nynt = nynt.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 21
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Forward rate from t + n until t + n + 1 with discount bonds

The forward rate is an interest rate on a fixed-income investment to
be made in the future.
In particular, the forward rate Fnt stands for the interest rate negotiated
at time t for an investment in a 1-period discount bond, which (the
investment) takes place after n periods, i.e. from t + n until t + n + 1.
Consider the following strategy:

1) Buy a discount bond (maturity n + 1) at price Pn+1,t

2) Finance the purchase by going short on x discount bonds
(maturity n) at price Pn,t:

xPn,t = Pn+1,t ⇒ x =
Pn+1,t

Pn,t

3) Implied forward rate Fnt with (1 + Fnt)x = 1.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 22
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Forward rate

Arbitrage is, loosely speaking, the possibility of a risk-free
profit at zero cost.

On an arbitrage-free market, it hods for the forward rate Fnt:

1 + Fnt =
1

Pn+1,t/Pnt
=

(1 + Yn+1,t)
n+1

(1 + Ynt)n ,

resp. for the continuous forward rate fnt:

fnt = ln Pnt − ln Pn+1,t = ynt + (n + 1)(yn+1,t − ynt)

= yn+1,t + n(yn+1,t − ynt)

as well as ynt =
1
n

∑n−1
i=0 fit (average forward rate).

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 23
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Remarks

1) fnt > 0 (and also Fnt > 0), if the discount price Pnt falls with
increasing maturity n.

2) fnt > ynt and fnt > yn+1,t (resp. Fnt > Ynt and Fnt > Yn+1,t),
when the term structure is normal.

3) Fnt (known and fixed at t) is different from Y1,t+n (unknown at t).

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 24
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Definition

Coupon bonds make (fixed) coupon payments of a given
fraction of face value at equally spaced dates up to and including
the maturity date, when the face value is also paid.

Coupon bonds can be though of as packages of discount
bonds.

Examples include US Treasury notes and bonds.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 26
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Formula

Given face value 1 and a (constant) coupon C, the payments at
t + i, i = 1, . . . , n are:

Ki = C, i = 1, . . . , n− 1, and Kn = 1 + C.

The price at time t is denoted by PCnt .

PCnt =

n∑
i=1

KiPit =

n∑
i=1

Ki

(1 + Yit)i

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 27
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Per-period yield to maturity

The per-period yield to maturity (or internal rate of return) on
a coupon bond, YCnt is defined as:

PCnt =

n∑
i=1

Ki

(1 + YCnt)i = C
n∑

i=1

1
(1 + YCnt)i +

1
(1 + YCnt)n

In general the equation above cannot be inverted to get an
analytical solution for YCnt.
Exceptions in two special cases (in each case with solution
YCnt = C/PCnt):

1) PCnt = 1, the bond is sold at face value (at par)⇒ YCnt = C.

2) n =∞⇒ YC∞t = C/PC∞t.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 28
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Zero-coupon and coupon term structure

For coupon bonds payments take place not only at maturity but also at
shorter periods. As a result YCnt = C (at par) differs generally from
Ynt. Generally it holds:

min
i=1,...,n

Yit ≤ YCnt ≤ max
i=1,...,n

Yit.

In particular, for PCnt > 1 and large C, YCnt diverges from Ynt in di-
rection short-term interest rates, whereas for PCnt < 1 and small C the
per-period yield lies nearer to Ynt.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 29



U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Zero-coupon and coupon term structure

The definition of the coupon term structure requires PCnt = 1.
The coupon term structure assigns (as a function of the maturity) every
n the coupon C of the the at par traded bond:

C(n, t) := YCnt|P=1 = C with

1 = C(n, t)
n∑

i=1

1
(1 + Yit)i +

1
(1 + Ynt)n , resp.

C(n, t) =
1− 1

(1+Ynt)n∑n
i=1

1
(1+Yit)i

, n = 1, 2, . . .

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 30
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Duration (effective maturity) of a coupon-bond

Example: Consider two coupon-bonds with:
I identical maturity n = 5,
I identical return per period yield to maturity 10% and
I coupons C1 = 0.10 and C2 = 0.01.

The respective prices are then P0.10,5,t = 1, P0.01,5,t = 0.6588.

For which of the two bonds is the percentage price change due to a
change in per period yield larger?

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 31
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Definition

Basic idea: a measure for the length of time that a holder of a coupon
bond has invested his money.
Macaulay’s Duration DCnt of a coupon bond :

DCnt =

n∑
i=1

wi · i ≤ n, mit wi =

Ki
(1+YCnt)i

PCnt
,

n∑
i=1

wi = 1.

In particular:

PCnt = 1 ⇒ DCnt =

n∑
i=1

(
1

1 + C(n, t)

)i−1

≤ 1 +
1

C(n, t)
.

DCnt resp. D∗Cnt = DCnt/(1 + YCnt) (modified duration) serves the
function of a measure of the negative of the elasticity of a coupon
bonds’s price with respect to its gross yield:

dPCnt

PCnt
= − DCnt

d(1 + YCnt)

(1 + YCnt)
= − D∗Cnt dYCnt.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 32
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Extensions

Modified duration measures the proportional sensitivity of a bond’s
price to a small absolute change in its yield.
Example: Let D∗Cnt = 10. Then the increase in the yield of 1 basis
point causes a 10 basis points drop in the bond price.

The concept of (modified) duration implies a linear relationship be-
tween the change in yield and the change in price.
However, the relationship between the log price and the yield is convex
⇒ improvement through quadratic approximation.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 33
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Quadratic approximation

Second-order Taylor series approximation:

P(Y + dY) ≈ P(Y) + P′(Y) · dY +
1
2

P′′(Y)(dY)2, i.e.

dPCnt

PCnt
≈ dPCnt

dYCnt

1
PCnt︸ ︷︷ ︸

−D∗
Cnt

dYCnt +
1
2

d 2PCnt

dY2
Cnt

1
PCnt︸ ︷︷ ︸

KCnt

(dYCnt)
2,

with the so-called convexity KCnt of the coupon bond:

KCnt :=
d 2PCnt

dY2
Cnt

1
PCnt

=

∑n
i=1

i(i+1)
(1+YCnt)i+2 Ki

PCnt
> 0.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 34
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Example

P0.04,5,t = 1; Price change following an increase of the per period yield
to maturity from 4 % to 5 % , i.e. dYCnt = 0.01.

(1) With YCnt = 0.05 and C = 0.04, the exact price of the coupon
bond is 0.95671 with dPCnt/PCnt = −0.04329.

(2) Lin. Approx.: DCnt = 4.62990, D∗Cnt = 4.45182 and
dPCnt/PCnt ≈ −D∗Cnt · dYCnt = −0.04452.

(3) Quadr. Approx.: KCnt = 25.0125, so that
dPCnt/PCnt ≈ −D∗Cnt · dYCnt + 0.5 · KCnt · (dYCnt)

2 = −0.04327.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 35
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Problem statement

Basic problem: extract an implied zero-coupon term structure from
the coupon term structure.
Justification: From empirical point of view, there is more data on
coupon bonds.
In the following the time subscripts t are omitted to economize on no-
tation.
The theoretical relationship between coupon bonds with prices PCj,j,
coupons Cj and maturity j = 1, 2, . . . , n and the discount bond prices
P1, . . . ,Pn resp. the zero-coupon term structure is given as follows:

PCj,j = CjP1 + CjP2 + · · ·+ (1 + Cj)Pj, j = 1, 2, . . . , n.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 37
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Linear regression approach

Problem: coupon term structure may be more-than-complete.

Idea: consider a stochastic, bond-specific error term uj in the linear
relationship above.

In particular, let J be the number of all the bonds outstanding at a
particular date with prices PCj,nj , coupons Cj and maturities nj, j =
1, 2, ..., J. Then the relationship between the coupon bond and zero-
coupon bond prices can be modeled by the following cross-sectional
linear regression:

PCjnj = CjP1 + CjP2 + · · ·+ (1 + Cj)Pnj + uj, mit j = 1, . . . , J.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 38
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Details

Classical assumption: uj iid with E (uj) = 0 and Var (uj) = σ2
j ≡ σ2.

Modification: Heteroskedasticity with σj = σsj, where sj can be the
bid-ask spread or duration.

Let N = maxj nj, then β = (P1,P2, . . . ,PN)
′ is the vector with the

coefficients. The rang condition for the (J × N)-regression matrix X
implies J ≥ N.

Problem : Too many, unrestricted parameters P1, . . . ,PN .

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 39
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Approach 1

Discount bond prices lie on a polynomial, e.g.

Pn = P(n) = 1 + θ1n + θ2n2 + θ3n3, from which follows

P∗Cjnj
= Xnj1θ1 + Xnj2θ2 + Xnj3θ3 + uj, j = 1, . . . , J, with

P∗Cjnj
= PCjnj − 1− njCj

Xnjk = nk
j + Cj

nj∑
i=1

ik, k = 1, 2, 3

With θ̂1, θ̂2, θ̂3 one can calculate P̂n and the estimated zero-coupon
bond term structure.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 40
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Approach 2

Discount bond prices lie on a spline function.
An rth-order spline is a piecewise rth-order polynomial with r − 1
continuous derivatives; its rth derivative is a step function. The points
where the rth derivative changes discontinuously are known as knot
points. For K− 1 subintervals there are K knot points: K− 2 junctions
and 2 endpoints. The spline has K − 2 + r free parameters, r for the
first subinterval and 1 (that determines the unrestricted rth derivative)
for each of the following K − 2 subintervals.

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 41
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Approach 3

Functions with a better fit for larger n.
Nelson/Siegel-approach for a continuous yield y(n), where P(n) =
e−ny(n):

yNS(n) = β0 + β1

(
1− e−α1n

α1n

)
+ β2

(
1− e−α1n

α1n
− e−α1n

)
.

Parameter interpretation:

β0 = lim
n→∞

y(n) (long-term yield),

β0 + β1 = lim
n→0

y(n) (short-term yield).

Dipl. Kaufm. Valentin Popov Fixed-Income Securities 42
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Svensson’s extention:

y(n) = yNS(n) + β3

(
1− e−α2n

α2n
− e−α2n

)
.

The new term converges for n→∞ and for n→ 0 to zero.
Estimation of β̂0, β̂1, β̂2, β̂3, α̂1, α̂2:

min
J∑

j=1

(PCjnj − P̂Cjnj)
2

s2
j

with

P̂Cjnj = CjP̂(1) + CjP̂(2) + · · ·+ (1 + Cj)P̂(nj), P̂(n) = e−n ŷ(n).

Application: Deutsche Bundesbank
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Term structure according to Svensson’s approach:
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β0 = 0.04, β1 = −0.01, β2 = −0.1, β3 = 0.1, α1 = 0.5, α2 = 0.2
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The Expectation Hypothesis

The term structure depends on the expectations of the investors
about the future yields in such a way that (Hypothesis I):

nynt
!
= Et (y1,t + y1,t+1 + . . .+ y1,t+n−1) .

Et (·) denotes the mean conditional on the information It available at
time t. (Assumption: the market expectations coincide with Et (·) (ra-
tional expectations).)
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Interpretation and problems

Interpretation: The fixed yield on a long-term bond equals the ex-
pected yield of consecutive short-term bonds, i.e. the expected change
in the short-term interest rates determines the term structure.
Note that the hypothesis is defined for continuous returns. It holds:

(1 + Ynt)
n = enynt = eEt(

∑n−1
i=0 y1,t+i)

< Et

(
e
∑n−1

i=0 y1,t+i
)
= Et

(
n−1∏
i=0

(1 + Y1,t+i)

)
.

This result is due to Jensen’s Inequality, according to which:

E(g(X)) ≥ g(E(X)),

where X is a random variable and g is a convex function.
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An alternative specification

In terms of continuous returns, the expectation hypothesis above is
equivalent to the following one:
The fixed yield on a short-term bond equals the expected one-period
holding-period return on a long-term bond, i.e. the expected change
in the long-term bonds determines the term structure. Formally (Hy-
pothesis II):

y1t = Et (rn,t+1) = Et (ln Pn−1,t+1 − ln Pn,t)

= Et (nynt − (n− 1)yn−1,t+1) .

Turning to discrete returns and applying Jensen’s Inequality, one gets:

1 + Y1t = ey1t = eEt(rn,t+1) < Et (ern,t+1) = Et (1 + Rn,t+1) .
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Equivalence of both hypotheses in the continuous case

For the proof of the equivalence of both hypotheses one uses the rule
Et (Et+1 (·)) = Et (·), which is a special case of the law of total expec-
tation E(Y) = EX(E(Y|X)).

From Hypothesis I to Hypothesis II:

From

nynt = Et (y1,t + y1,t+1 + . . .+ y1,t+n−1) and

(n− 1)yn−1,t+1 = Et+1 (y1,t+1 + . . .+ y1,t+n−1) resp.

Et ((n− 1)yn−1,t+1) = Et (y1,t+1 + . . .+ y1,t+n−1) ,

Subtracting the third row from the first one yields:

y1t = Et (nynt − (n− 1)yn−1,t+1) = Et (rn,t+1) .
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An alternative proof:

From Hypothesis II to Hypothesis I:

An iterative application of

y1t = Et (nynt − (n− 1)yn−1,t+1) resp.

nynt = y1t + Et ((n− 1)yn−1,t+1) :

delivers the following result:

nynt = y1t + Et ((n− 1)yn−1,t+1)

= y1t + Et (y1,t+1 + Et+1 ((n− 2)yn−2,t+2))

= . . .

= y1t + Et (y1,t+1 + . . .+ y1,t+n−1) .
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The yield spread snt as a forecasting tool

The relevance of the yield spread for the forecast of the (short-term)
change in the long-term interest rates (large n) follows from Hypoth-
esis II.
In particular:

y1t − ynt = (n− 1)Et (ynt − yn−1,t+1) , resp.

Et (yn−1,t+1 − ynt) =
ynt − y1t

n− 1
=

snt

n− 1
,

or
yn−1,t+1 − ynt =

snt

n− 1
+ εnt,

with Et (εnt) = 0.
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Relationship with the forward rate

From the original expression

nynt = Et (y1,t + y1,t+1 + . . .+ y1,t+n−1) ,

it follows (with the acceptance of this expectation hypothesis) that

fnt = (n + 1)yn+1,t − nynt = Et (y1,t+n) .

In that way the forward rate fnt is a (longterm) forecast for the short-
term interest rate y1,t+n (and also a forecast for fn−1,t+1, since fnt =
Et (Et+1 (y1,t+n)) = Et (fn−1,t+1)).
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Models and tests with time constant term premia

Forecast for the future long rates:

Et (yn−1,t+1 − ynt) = αn +
snt

n− 1
resp.

yn−1,t+1 − ynt = αn + βn
snt

n− 1
+ εnt, t = 1, . . . ,T.

Testing the hypothesis βn = 1; empirical evidence for βn < 1, quite
often βn < 0, see Campell, Lo, MacKinley (1997), The Econometrics
of Financial Markets, Princeton Unversity Press, S. 420-21.)

Forecast for the future short rates:

Et (y1,t+n − y1t) = δn + (fnt − y1t) resp.

y1,t+n − y1t = δn + βn(fnt − y1t) + εnt, t = 1, . . . ,T.

Testing the hypothesis βn = 1.
(See Eugene F. Fama (1976): Forward rates as predictors of future spot
rates, Journal of Financial Economics, Vol. 3, 361-377.)
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Note

When the expectation hypothesis are defined for the discrete instead of
the continuous returns, Hypothesis I and Hypothesis II are contradic-
tory.

On the one side:

(1 + Ynt)
n !

= Et ((1 + Y1t)(1 + Y1,t+1) · · · (1 + Y1,t+n−1))

= (1 + Y1t) Et (Et+1 ((1 + Y1,t+1) · · · (1 + Y1,t+n−1)))

= (1 + Y1t) Et
(
(1 + Yn−1,t+1)

n−1) ,
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Note

On the other side:

(1 + Y1t)
!
= Et (1 + Rn,t+1) = Et

(
Pn−1,t+1

Pnt

)
= (1 + Ynt)

n Et

(
1

(1 + Yn−1,t+1)n−1

)
,

However :

Et

(
1

(1 + Yn−1,t+1)n−1

)
>

1
Et ((1 + Yn−1,t+1)n−1)

.

(Jensen’s Inequality)
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