Fixed-Income Securities, Interest Rates and Term Structure of Interest Rates

Dipl. Kaufm. Valentin Popov
Statistics and Econometrics Department
University of Saarland

Sofia, April 2012

These lecture notes are based on:

- the lecture notes on Portfolio Selection by Prof. Friedmann, University of Saarland
-"The Econometrics of Financial Markets", Campbell, Lo and MacKinlay, 1997, Princeton University Press (Chapter 10)

Outline

Introduction and Notation

Basic concepts
Zero-coupon bonds
Coupon-bonds
Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

Outline

Introduction and Notation

Basic concepts
 Zero-coupon bonds
 Coupon-bonds
 Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

Definition

- Fixed-income securities are default-free bonds with payments that are fully specified in advance.
- fixed-income markets \neq equity markets
- Examples for fixed-income securities include Treasury securities - bills, notes, bonds (US), Staatsanleihen -Bundesobligationen/-anleihen (Germany), etc.

Notation

- Price of a security at time t :

$$
P_{t}, \quad P_{t}>0
$$

- Future payment at time $t+i$:

$$
C_{t+i}, \quad i \in I \subseteq \mathbf{N}, \quad C_{t+i} \geq 0
$$

- Payments take place at discrete times $t \in \mathbb{N}_{0}$
- Length of a time interval from t to $t+n(n \in \mathbb{N}): n$ (basis) periods

Discrete vs. continuous returns: Discrete returns

If not explicitly specified, returns are based on a single holding period. The discrete return R of a bond with price $P_{t}>0$ at time t and future payments $C_{t+i}, i \in I \subseteq \mathbf{N}, C_{t+i} \geq 0, \sum_{i \in I} C_{t+i}>0$, is defined as the interest rate R, for which the price P_{t} equals the present value of the future payments:

$$
P_{t}=\sum_{i \in I} \frac{C_{t+i}}{(1+R)^{i}}, \quad R>-1
$$

Interest payments take place at discrete points of time.
Special case: Discrete return for a single payment at time $t+n$

$$
1+R=\left(\frac{C_{t+n}}{P_{t}}\right)^{\frac{1}{n}} \quad \text { and } \quad C_{t+n}=P_{t}(1+R)^{n}
$$

Discrete vs. continuous returns: Continuous returns

How much is the interest rate x_{k}, which equals the single-period return $1+R$, when the interest payments take place pro rata within the period after $\frac{1}{k}, \frac{2}{k}, \ldots, \frac{k-1}{k}, 1$ sub-periods?

$$
\begin{aligned}
\left(1+\frac{x_{k}}{k}\right)^{k} & =1+R \\
\Leftrightarrow \quad x_{k} & =k\left((1+R)^{\frac{1}{k}}-1\right)
\end{aligned}
$$

e.g. $R=0.21$:
$x_{2}=0.2, x_{4}=0.1952354, x_{12}=0.1921424, x_{365}=0.1906701$.

Discrete vs. continuous returns: Continuous returns

Continuous return: r

$$
\lim _{k \rightarrow \infty}\left(1+\frac{r}{k}\right)^{k}=1+R \Leftrightarrow e^{r}=1+R \Leftrightarrow r=\ln (1+R)
$$

e.g. for $R=0.21: r=\ln (1.21)=0.1906204$.

It holds $r=\ln (1+R) \leq R$, Equality is reached when $R=0$; when $|R| \approx 0$ the difference is minor.

Special case: Continuous return for a single payment at time $t+n$

$$
r=\ln (1+R)=\frac{1}{n}\left(\ln C_{t+n}-\ln P_{t}\right) \quad \text { and } \quad C_{t+n}=P_{t} e^{n r}
$$

Discrete and continuous returns

Discrete vs. continuous returns: one period returns

Special case:
Discrete and continuous one-period return at time $t+1$ (no additional payment - buy at P_{t}, sell at $\left.P_{t+1}=C_{t+1}\right)$:

$$
\begin{aligned}
R_{t+1} & =\frac{P_{t+1}}{P_{t}}-1=\frac{P_{t+1}-P_{t}}{P_{t}} \\
r_{t+1} & =\ln \left(1+R_{t+1}\right)=\ln \left(\frac{P_{t+1}}{P_{t}}\right)=\ln P_{t+1}-\ln P_{t}
\end{aligned}
$$

Multiple-period returns over k periods

Discrete return $R_{t}(k)$ and continuous return $r_{t}(k)$:

$$
\begin{aligned}
1+R_{t}(k) & =\frac{P_{t}}{P_{t-k}} \\
r_{t}(k) & =\ln \left(1+R_{t}(k)\right)=\ln \left(\frac{P_{t}}{P_{t-k}}\right)=\ln P_{t}-\ln P_{t-k}
\end{aligned}
$$

with

$$
\begin{aligned}
1+R_{t}(k) & =\prod_{i=0}^{k-1}\left(1+R_{t-i}\right) \\
r_{t}(k) & =\sum_{i=0}^{k-1} r_{t-i}
\end{aligned}
$$

Comparison of returns for different period lengths

Annualisation:

(Example: daily return R_{t} resp. $r_{t}, 5$ trading days per week, 250 trading days p.a.)
Assumption: Daily resp. weekly returns are constant over the period (a week resp. an year)

Discrete returns

$\begin{array}{lll}\text { Daily return } & R_{t} & \text { annualized with: } \\ \text { Weekly return } & R_{t}(5) & \left(1+R_{t}\right)^{250}-1 \\ \text { annualized with: } & \left(1+R_{t}(5)\right)^{52}-1\end{array}$
Continuous returns
$\begin{array}{llll}\text { Daily return } & r_{t} & \text { annualized with: } & 250 r_{t} \\ \text { Weekly return } & r_{t}(5) & \text { annualized with: } & 52 r_{t}(5)\end{array}$

Outline

Introduction and Notation

Basic concepts
Zero-coupon bonds
Coupon-bonds
Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

Outline

Introduction and Notation

Basic concepts
Zero-coupon bonds
Coupon-bonds
Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

Definition

Zero-coupon bonds, also called discount bonds, make a single payment at a date in the future known as maturity date.

The size of the payment is the face value of the bond. For convenience in the following we assume that the face value is always 1 monetary unit (say EURO).

The length of time until maturity is the maturity of the bond.
An example for a zero-coupon bond are US Treasury bills.

Yield to maturity

Length of time from today (t) until maturity $(t+n)$: maturity n

Payment at t (Price):

$$
P_{n t}
$$

Payment at $t+n$ (face value): $\quad P_{0, t+n}=1$ EURO

Yield to maturity: $\quad Y_{n t}=\left(\frac{1}{P_{n t}}\right)^{\frac{1}{n}}-1 \quad$ with $\quad P_{n t}=\frac{1}{\left(1+Y_{n t}\right)^{n}}$
log yield: $\quad y_{n t}=\ln \left(1+Y_{n t}\right)$ with $\ln P_{n t}=-n y_{n t}$

Properties

Elasticity of a variable B with respect to a variable A is defined to be the derivative of B with repect to A, times A / B :

$$
\frac{d B}{d A} \cdot \frac{A}{B}
$$

Equivalently, it is the derivative of $\ln B$ with respect to $\ln A$.

Elasticity of the price with respect to the yield (maturity n)

$$
-n=\frac{d \ln P_{n t}}{d \ln \left(1+Y_{n t}\right)} \text {, i.e. } \frac{d P_{n t}}{P_{n t}}=-n \frac{d Y_{n t}}{1+Y_{n t}} \approx-n \cdot d Y_{n t}
$$

Yield spread and term structure

Yield spread: $S_{n t}=Y_{n t}-Y_{1 t}$ resp. $s_{n t}=y_{n t}-y_{1 t}$.

Term structure of interest rates at $t: Y_{n t}\left(\right.$ or $\left.y_{n t}\right)$ as a function of n

Yield curve (plot of the term structure):
"normal yield curve": upward sloping,
" inverse yield curve": downward sloping.

Discount bonds: holding-period returns

The holding-period return on a bond is the return over some holding period less than the bond's maturity.
For convenience, the holding-period is set to a single period.
In that way, the discrete return $R_{n, t+1}$ is given through the price change of an n-period bond purchased at time t at price $P_{n t}$ and sold at time $t+1$ at price $P_{n-1, t+1}$:

$$
1+R_{n, t+1}=\frac{P_{n-1, t+1}}{P_{n t}}=\frac{\left(1+Y_{n t}\right)^{n}}{\left(1+Y_{n-1, t+1}\right)^{n-1}}
$$

resp. for the continuous holding-period return:

$$
r_{n, t+1}=\ln P_{n-1, t+1}-\ln P_{n t}=y_{n t}-(n-1)\left(y_{n-1, t+1}-y_{n t}\right) .
$$

Properties

The excess return $r_{n, t+1}-y_{1 t}$ depends on the spread $s_{n t}$ and the change in the yield over the holding period:

$$
r_{n, t+1}-y_{1 t}=s_{n t}-(n-1)\left(y_{n-1, t+1}-y_{n t}\right)
$$

It holds: $\quad y_{n t}=\frac{1}{n} \sum_{i=0}^{n-1} r_{n-i, t+i+1}$ (average holding-period return),
due to the compensation of purchasing and selling activities,

$$
\sum_{i=0}^{n-1} r_{n-i, t+i+1}=\ln P_{0, t+n}-\ln P_{n t}=\ln 1+n y_{n t}=n y_{n t}
$$

Forward rate from $t+n$ until $t+n+1$ with discount bonds

The forward rate is an interest rate on a fixed-income investment to be made in the future.
In particular, the forward rate $F_{n t}$ stands for the interest rate negotiated at time t for an investment in a 1-period discount bond, which (the investment) takes place after n periods, i.e. from $t+n$ until $t+n+1$.
Consider the following strategy:

1) Buy a discount bond (maturity $n+1$) at price $P_{n+1, t}$
2) Finance the purchase by going short on x discount bonds (maturity n) at price $P_{n, t}$:

$$
x P_{n, t}=P_{n+1, t} \Rightarrow x=\frac{P_{n+1, t}}{P_{n, t}}
$$

3) Implied forward rate $F_{n t}$ with $\left(1+F_{n t}\right) x=1$.

Forward rate

Arbitrage is, loosely speaking, the possibility of a risk-free profit at zero cost.
On an arbitrage-free market, it hods for the forward rate $F_{n t}$:

$$
1+F_{n t}=\frac{1}{P_{n+1, t} / P_{n t}}=\frac{\left(1+Y_{n+1, t}\right)^{n+1}}{\left(1+Y_{n t}\right)^{n}}
$$

resp. for the continuous forward rate $f_{n t}$:

$$
\begin{aligned}
f_{n t}=\ln P_{n t}-\ln P_{n+1, t} & =y_{n t}+(n+1)\left(y_{n+1, t}-y_{n t}\right) \\
& =y_{n+1, t}+n\left(y_{n+1, t}-y_{n t}\right)
\end{aligned}
$$

as well as $y_{n t}=\frac{1}{n} \sum_{i=0}^{n-1} f_{i t}$ (average forward rate).

Remarks

1) $f_{n t}>0$ (and also $F_{n t}>0$), if the discount price $P_{n t}$ falls with increasing maturity n.
2) $f_{n t}>y_{n t}$ and $f_{n t}>y_{n+1, t}$ (resp. $F_{n t}>Y_{n t}$ and $\left.F_{n t}>Y_{n+1, t}\right)$, when the term structure is normal.
3) $F_{n t}$ (known and fixed at t) is different from $Y_{1, t+n}$ (unknown at t).

Outline

Introduction and Notation

Basic concepts
Zero-coupon bonds
Coupon-bonds
Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

Definition

Coupon bonds make (fixed) coupon payments of a given fraction of face value at equally spaced dates up to and including the maturity date, when the face value is also paid.

Coupon bonds can be though of as packages of discount bonds.

Examples include US Treasury notes and bonds.

Formula

Given face value 1 and a (constant) coupon C, the payments at $t+i, i=1, \ldots, n$ are:

$$
K_{i}=C, i=1, \ldots, n-1, \text { and } K_{n}=1+C .
$$

The price at time t is denoted by $P_{C n t}$.

$$
P_{C n t}=\sum_{i=1}^{n} K_{i} P_{i t}=\sum_{i=1}^{n} \frac{K_{i}}{\left(1+Y_{i t}\right)^{i}}
$$

Per-period yield to maturity

The per-period yield to maturity (or internal rate of return) on a coupon bond, $Y_{C n t}$ is defined as:

$$
P_{C n t}=\sum_{i=1}^{n} \frac{K_{i}}{\left(1+Y_{C n t}\right)^{i}}=C \sum_{i=1}^{n} \frac{1}{\left(1+Y_{C n t}\right)^{i}}+\frac{1}{\left(1+Y_{C n t}\right)^{n}}
$$

In general the equation above cannot be inverted to get an analytical solution for $Y_{C n t}$.
Exceptions in two special cases (in each case with solution $\left.Y_{C n t}=C / P_{C n t}\right)$:

1) $P_{C n t}=1$, the bond is sold at face value (at par) $\Rightarrow Y_{C n t}=C$.
2) $n=\infty \Rightarrow Y_{C \infty t}=C / P_{C \infty t}$.

Zero-coupon and coupon term structure

For coupon bonds payments take place not only at maturity but also at shorter periods. As a result $Y_{C n t}=C$ (at par) differs generally from $Y_{n t}$. Generally it holds:

$$
\min _{i=1, \ldots, n} Y_{i t} \leq Y_{C n t} \leq \max _{i=1, \ldots, n} Y_{i t} .
$$

In particular, for $P_{C n t}>1$ and large $C, Y_{C n t}$ diverges from $Y_{n t}$ in direction short-term interest rates, whereas for $P_{C n t}<1$ and small C the per-period yield lies nearer to $Y_{n t}$.

Zero-coupon and coupon term structure

The definition of the coupon term structure requires $P_{C n t}=1$. The coupon term structure assigns (as a function of the maturity) every n the coupon C of the the at par traded bond:

$$
\begin{aligned}
C(n, t) & :=Y_{C n t \mid P=1}=C \quad \text { with } \\
1 & =C(n, t) \sum_{i=1}^{n} \frac{1}{\left(1+Y_{i t}\right)^{i}}+\frac{1}{\left(1+Y_{n t}\right)^{n}}, \quad \text { resp. } \\
C(n, t) & =\frac{1-\frac{1}{\left(1+Y_{n t}\right)^{n}}}{\sum_{i=1}^{n} \frac{1}{\left(1+Y_{i t}\right)^{i}}}, \quad n=1,2, \ldots
\end{aligned}
$$

Duration (effective maturity) of a coupon-bond

Example: Consider two coupon-bonds with:

- identical maturity $n=5$,
- identical return per period yield to maturity 10% and
- coupons $C 1=0.10$ and $C 2=0.01$.

The respective prices are then $P_{0.10,5, t}=1, P_{0.01,5, t}=0.6588$.
For which of the two bonds is the percentage price change due to a change in per period yield larger?

Definition

Basic idea: a measure for the length of time that a holder of a coupon bond has invested his money.
Macaulay's Duration $D_{C n t}$ of a coupon bond :

$$
D_{C n t}=\sum_{i=1}^{n} w_{i} \cdot i \leq n, \quad \text { mit } \quad w_{i}=\frac{\frac{K_{i}}{\left(1+Y_{C n t}\right)^{i}}}{P_{C n t}}, \quad \sum_{i=1}^{n} w_{i}=1 .
$$

In particular:

$$
P_{C n t}=1 \Rightarrow D_{C n t}=\sum_{i=1}^{n}\left(\frac{1}{1+C(n, t)}\right)^{i-1} \leq 1+\frac{1}{C(n, t)}
$$

$D_{C n t}$ resp. $D_{C n t}^{*}=D_{C n t} /\left(1+Y_{C n t}\right)($ modified duration $)$ serves the function of a measure of the negative of the elasticity of a coupon bonds's price with respect to its gross yield:

$$
\frac{d P_{C n t}}{P_{C n t}}=-D_{C n t} \frac{d\left(1+Y_{C n t}\right)}{\left(1+Y_{C n t}\right)}=-D_{C n t}^{*} d Y_{C n t} .
$$

Extensions

Modified duration measures the proportional sensitivity of a bond's price to a small absolute change in its yield.
Example: Let $D_{C n t}^{*}=10$. Then the increase in the yield of 1 basis point causes a 10 basis points drop in the bond price.

The concept of (modified) duration implies a linear relationship between the change in yield and the change in price.
However, the relationship between the log price and the yield is convex \Rightarrow improvement through quadratic approximation.

Quadratic approximation

Second-order Taylor series approximation:

$$
\begin{gathered}
P(Y+d Y) \approx P(Y)+P^{\prime}(Y) \cdot d Y+\frac{1}{2} P^{\prime \prime}(Y)(d Y)^{2} \text {, i.e. } \\
\frac{d P_{C n t}}{P_{C n t}} \approx \underbrace{\frac{d P_{C n t}}{d Y_{C n t}} \frac{1}{P_{C n t}}}_{-D_{C n t}^{*}} d Y_{C n t}+\frac{1}{2} \underbrace{\frac{d^{2} P_{C n t}}{d Y_{C n t}^{2}} \frac{1}{P_{C n t}}}_{K_{C n t}}\left(d Y_{C n t}\right)^{2},
\end{gathered}
$$

with the so-called convexity $K_{C n t}$ of the coupon bond:

$$
K_{C n t}:=\frac{d^{2} P_{C n t}}{d Y_{C n t}^{2}} \frac{1}{P_{C n t}}=\frac{\sum_{i=1}^{n} \frac{i(i+1)}{\left(1+Y_{C n t}\right)^{i+2}} K_{i}}{P_{C n t}}>0
$$

Example

$P_{0.04,5, t}=1$; Price change following an increase of the per period yield to maturity from 4% to 5%, i.e. $d Y_{C n t}=0.01$.
(1) With $Y_{C n t}=0.05$ and $C=0.04$, the exact price of the coupon bond is 0.95671 with $d P_{C n t} / P_{C n t}=-0.04329$.
(2) Lin. Approx.: $D_{C n t}=4.62990, D_{C n t}^{*}=4.45182$ and $d P_{C n t} / P_{C n t} \approx-D_{C n t}^{*} \cdot d Y_{C n t}=-0.04452$.
(3) Quadr. Approx.: $K_{C n t}=25.0125$, so that $d P_{C n t} / P_{C n t} \approx-D_{C n t}^{*} \cdot d Y_{C n t}+0.5 \cdot K_{C n t} \cdot\left(d Y_{C n t}\right)^{2}=-0.04327$.

Outline

Introduction and Notation

Basic concepts

Zero-coupon bonds
 Coupon-bonds

Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

Problem statement

Basic problem: extract an implied zero-coupon term structure from the coupon term structure.
Justification: From empirical point of view, there is more data on coupon bonds.
In the following the time subscripts t are omitted to economize on notation.
The theoretical relationship between coupon bonds with prices $P_{C_{j}, j}$, coupons C_{j} and maturity $j=1,2, \ldots, n$ and the discount bond prices P_{1}, \ldots, P_{n} resp. the zero-coupon term structure is given as follows:

$$
P_{C_{j}, j}=C_{j} P_{1}+C_{j} P_{2}+\cdots+\left(1+C_{j}\right) P_{j}, j=1,2, \ldots, n
$$

Linear regression approach

Problem: coupon term structure may be more-than-complete.
Idea: consider a stochastic, bond-specific error term u_{j} in the linear relationship above.

In particular, let J be the number of all the bonds outstanding at a particular date with prices $P_{C_{j}, n_{j}}$, coupons C_{j} and maturities $n_{j}, j=$ $1,2, \ldots, J$. Then the relationship between the coupon bond and zerocoupon bond prices can be modeled by the following cross-sectional linear regression:

$$
P_{C_{j} n_{j}}=C_{j} P_{1}+C_{j} P_{2}+\cdots+\left(1+C_{j}\right) P_{n_{j}}+u_{j}, \text { mit } j=1, \ldots, J .
$$

Details

Classical assumption: u_{j} iid with $\mathrm{E}\left(u_{j}\right)=0$ and $\operatorname{Var}\left(u_{j}\right)=\sigma_{j}^{2} \equiv \sigma^{2}$. Modification: Heteroskedasticity with $\sigma_{j}=\sigma s_{j}$, where s_{j} can be the bid-ask spread or duration.

Let $N=\max _{j} n_{j}$, then $\beta=\left(P_{1}, P_{2}, \ldots, P_{N}\right)^{\prime}$ is the vector with the coefficients. The rang condition for the $(J \times N)$-regression matrix X implies $J \geq N$.

Problem : Too many, unrestricted parameters P_{1}, \ldots, P_{N}.

Approach 1

Discount bond prices lie on a polynomial, e.g.

$$
\begin{gathered}
P_{n}=P(n)=1+\theta_{1} n+\theta_{2} n^{2}+\theta_{3} n^{3}, \text { from which follows } \\
P_{C_{j} n_{j}}^{*}=X_{n_{j} 1} \theta_{1}+X_{n_{j}} \theta_{2}+X_{n_{j}} \theta_{3}+u_{j}, \quad j=1, \ldots, J, \text { with } \\
P_{C_{j} n_{j}}^{*}=P_{C_{j} n_{j}}-1-n_{j} C_{j} \\
X_{n_{j} k}=n_{j}^{k}+C_{j} \sum_{i=1}^{n_{j}} i^{k}, k=1,2,3
\end{gathered}
$$

With $\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}$ one can calculate \hat{P}_{n} and the estimated zero-coupon bond term structure.

Approach 2

Discount bond prices lie on a spline function.
An r th-order spline is a piecewise r th-order polynomial with $r-1$ continuous derivatives; its r th derivative is a step function. The points where the r th derivative changes discontinuously are known as knot points. For $K-1$ subintervals there are K knot points: $K-2$ junctions and 2 endpoints. The spline has $K-2+r$ free parameters, r for the first subinterval and 1 (that determines the unrestricted r th derivative) for each of the following $K-2$ subintervals.

Approach 3

Functions with a better fit for larger n.
Nelson/Siegel-approach for a continuous yield $y(n)$, where $P(n)=$ $e^{-n y(n)}$:

$$
y^{\mathrm{NS}}(n)=\beta_{0}+\beta_{1}\left(\frac{1-e^{-\alpha_{1} n}}{\alpha_{1} n}\right)+\beta_{2}\left(\frac{1-e^{-\alpha_{1} n}}{\alpha_{1} n}-e^{-\alpha_{1} n}\right) .
$$

Parameter interpretation:

$$
\begin{aligned}
\beta_{0} & =\lim _{n \rightarrow \infty} y(n) \quad \text { (long-term yield) } \\
\beta_{0}+\beta_{1} & =\lim _{n \rightarrow 0} y(n) \quad \text { (short-term yield). }
\end{aligned}
$$

Svensson's extention:

$$
y(n)=y^{\mathrm{NS}}(n)+\beta_{3}\left(\frac{1-e^{-\alpha_{2} n}}{\alpha_{2} n}-e^{-\alpha_{2} n}\right) .
$$

The new term converges for $n \rightarrow \infty$ and for $n \rightarrow 0$ to zero.
Estimation of $\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \hat{\beta}_{3}, \hat{\alpha}_{1}, \hat{\alpha}_{2}$:

$$
\begin{gathered}
\min \sum_{j=1}^{J} \frac{\left(P_{C_{j} n_{j}}-\hat{P}_{C_{j} n_{j}}\right)^{2}}{s_{j}^{2}} \text { with } \\
\hat{P}_{C_{j} n_{j}}=C_{j} \hat{P}(1)+C_{j} \hat{P}(2)+\cdots+\left(1+C_{j}\right) \hat{P}\left(n_{j}\right), \quad \hat{P}(n)=e^{-n \hat{y}(n)} .
\end{gathered}
$$

Application: Deutsche Bundesbank

Term structure according to Svensson's approach:

Outline

Introduction and Notation

Basic concepts
 Zero-coupon bonds
 Coupon-bonds
 Estimating the Zero-Coupon Term structure

The Expectation Hypothesis and Interest Rate Forecasts

The Expectation Hypothesis

The term structure depends on the expectations of the investors about the future yields in such a way that (Hypothesis I):

$$
n y_{n t} \stackrel{!}{=} \mathrm{E}_{t}\left(y_{1, t}+y_{1, t+1}+\ldots+y_{1, t+n-1}\right)
$$

$\mathrm{E}_{t}(\cdot)$ denotes the mean conditional on the information \mathcal{I}_{t} available at time t. (Assumption: the market expectations coincide with $\mathrm{E}_{t}(\cdot)$ (rational expectations).)

Interpretation and problems

Interpretation: The fixed yield on a long-term bond equals the expected yield of consecutive short-term bonds, i.e. the expected change in the short-term interest rates determines the term structure.
Note that the hypothesis is defined for continuous returns. It holds:

$$
\begin{aligned}
\left(1+Y_{n t}\right)^{n} & =e^{n y_{n t}}=e^{\mathrm{E}_{t}\left(\sum_{i=0}^{n-1} y_{1, t+i}\right)} \\
& <\mathrm{E}_{t}\left(e^{\sum_{i=0}^{n-1} y_{1, t+i}}\right)=\mathrm{E}_{t}\left(\prod_{i=0}^{n-1}\left(1+Y_{1, t+i}\right)\right) .
\end{aligned}
$$

This result is due to Jensen's Inequality, according to which:

$$
E(g(X)) \geq g(E(X))
$$

where X is a random variable and g is a convex function.

An alternative specification

In terms of continuous returns, the expectation hypothesis above is equivalent to the following one:
The fixed yield on a short-term bond equals the expected one-period holding-period return on a long-term bond, i.e. the expected change in the long-term bonds determines the term structure. Formally (Hypothesis II):

$$
\begin{aligned}
y_{1 t} & =\mathrm{E}_{t}\left(r_{n, t+1}\right)=\mathrm{E}_{t}\left(\ln P_{n-1, t+1}-\ln P_{n, t}\right) \\
& =\mathrm{E}_{t}\left(n y_{n t}-(n-1) y_{n-1, t+1}\right) .
\end{aligned}
$$

Turning to discrete returns and applying Jensen's Inequality, one gets:

$$
1+Y_{1 t}=e^{y_{1 t}}=e^{\mathrm{E}_{t}\left(r_{n, t+1}\right)}<\mathrm{E}_{t}\left(e^{r_{n, t+1}}\right)=\mathrm{E}_{t}\left(1+R_{n, t+1}\right)
$$

Equivalence of both hypotheses in the continuous case

For the proof of the equivalence of both hypotheses one uses the rule $\mathrm{E}_{t}\left(\mathrm{E}_{t+1}(\cdot)\right)=\mathrm{E}_{t}(\cdot)$, which is a special case of the law of total expectation $\mathrm{E}(Y)=\mathrm{E}_{X}(\mathrm{E}(Y \mid X))$.

From Hypothesis I to Hypothesis II:

From

$$
\begin{aligned}
n y_{n t} & =\mathrm{E}_{t}\left(y_{1, t}+y_{1, t+1}+\ldots+y_{1, t+n-1}\right) \text { and } \\
(n-1) y_{n-1, t+1} & =\mathrm{E}_{t+1}\left(y_{1, t+1}+\ldots+y_{1, t+n-1}\right) \text { resp. } \\
\mathrm{E}_{t}\left((n-1) y_{n-1, t+1}\right) & =\mathrm{E}_{t}\left(y_{1, t+1}+\ldots+y_{1, t+n-1}\right)
\end{aligned}
$$

Subtracting the third row from the first one yields:

$$
y_{1 t}=\mathrm{E}_{t}\left(n y_{n t}-(n-1) y_{n-1, t+1}\right)=\mathrm{E}_{t}\left(r_{n, t+1}\right) .
$$

An alternative proof:

From Hypothesis II to Hypothesis I:

An iterative application of

$$
\begin{aligned}
y_{1 t} & =\mathrm{E}_{t}\left(n y_{n t}-(n-1) y_{n-1, t+1}\right) \text { resp. } \\
n y_{n t} & =y_{1 t}+\mathrm{E}_{t}\left((n-1) y_{n-1, t+1}\right):
\end{aligned}
$$

delivers the following result:

$$
\begin{aligned}
n y_{n t} & =y_{1 t}+\mathrm{E}_{t}\left((n-1) y_{n-1, t+1}\right) \\
& =y_{1 t}+\mathrm{E}_{t}\left(y_{1, t+1}+\mathrm{E}_{t+1}\left((n-2) y_{n-2, t+2}\right)\right) \\
& =\cdots \\
& =y_{1 t}+\mathrm{E}_{t}\left(y_{1, t+1}+\ldots+y_{1, t+n-1}\right)
\end{aligned}
$$

The yield spread $s_{n t}$ as a forecasting tool

The relevance of the yield spread for the forecast of the (short-term) change in the long-term interest rates (large n) follows from Hypothesis II.
In particular:

$$
\begin{aligned}
y_{1 t}-y_{n t} & =(n-1) \mathrm{E}_{t}\left(y_{n t}-y_{n-1, t+1}\right), \text { resp. } \\
\mathrm{E}_{t}\left(y_{n-1, t+1}-y_{n t}\right) & =\frac{y_{n t}-y_{1 t}}{n-1}=\frac{s_{n t}}{n-1},
\end{aligned}
$$

or

$$
y_{n-1, t+1}-y_{n t}=\frac{s_{n t}}{n-1}+\varepsilon_{n t},
$$

with $\mathrm{E}_{t}\left(\varepsilon_{n t}\right)=0$.

Relationship with the forward rate

From the original expression

$$
n y_{n t}=\mathrm{E}_{t}\left(y_{1, t}+y_{1, t+1}+\ldots+y_{1, t+n-1}\right),
$$

it follows (with the acceptance of this expectation hypothesis) that

$$
f_{n t}=(n+1) y_{n+1, t}-n y_{n t}=\mathrm{E}_{t}\left(y_{1, t+n}\right) .
$$

In that way the forward rate $f_{n t}$ is a (longterm) forecast for the shortterm interest rate $y_{1, t+n}$ (and also a forecast for $f_{n-1, t+1}$, since $f_{n t}=$ $\left.\mathrm{E}_{t}\left(\mathrm{E}_{t+1}\left(y_{1, t+n}\right)\right)=\mathrm{E}_{t}\left(f_{n-1, t+1}\right)\right)$.

Models and tests with time constant term premia

Forecast for the future long rates:

$$
\begin{array}{rlrl}
\mathrm{E}_{t}\left(y_{n-1, t+1}-y_{n t}\right) & =\alpha_{n}+\frac{s_{n t}}{n-1} & \text { resp. } \\
y_{n-1, t+1}-y_{n t} & =\alpha_{n}+\beta_{n} \frac{s_{n t}}{n-1}+\varepsilon_{n t}, t=1, \ldots, T
\end{array}
$$

Testing the hypothesis $\beta_{n}=1$; empirical evidence for $\beta_{n}<1$, quite often $\beta_{n}<0$, see Campell, Lo, MacKinley (1997), The Econometrics of Financial Markets, Princeton Unversity Press, S. 420-21.)

Forecast for the future short rates:

$$
\begin{array}{rlr}
\mathrm{E}_{t}\left(y_{1, t+n}-y_{1 t}\right) & =\delta_{n}+\left(f_{n t}-y_{1 t}\right) & \text { resp. } \\
y_{1, t+n}-y_{1 t} & =\delta_{n}+\beta_{n}\left(f_{n t}-y_{1 t}\right)+\varepsilon_{n t}, t=1, \ldots, T
\end{array}
$$

Testing the hypothesis $\beta_{n}=1$.
(See Eugene F. Fama (1976): Forward rates as predictors of future spot rates, Journal of Financial Economics, Vol. 3, 361-377.)

Note

When the expectation hypothesis are defined for the discrete instead of the continuous returns, Hypothesis I and Hypothesis II are contradictory.

On the one side:

$$
\begin{aligned}
\left(1+Y_{n t}\right)^{n} & \stackrel{!}{=} \mathrm{E}_{t}\left(\left(1+Y_{1 t}\right)\left(1+Y_{1, t+1}\right) \cdots\left(1+Y_{1, t+n-1}\right)\right) \\
& =\left(1+Y_{1 t}\right) \mathrm{E}_{t}\left(\mathrm{E}_{t+1}\left(\left(1+Y_{1, t+1}\right) \cdots\left(1+Y_{1, t+n-1}\right)\right)\right) \\
& =\left(1+Y_{1 t}\right) \mathrm{E}_{t}\left(\left(1+Y_{n-1, t+1}\right)^{n-1}\right)
\end{aligned}
$$

Note

On the other side:

$$
\begin{aligned}
\left(1+Y_{1 t}\right) & \stackrel{!}{=} \mathrm{E}_{t}\left(1+R_{n, t+1}\right)=\mathrm{E}_{t}\left(\frac{P_{n-1, t+1}}{P_{n t}}\right) \\
& =\left(1+Y_{n t}\right)^{n} \mathrm{E}_{t}\left(\frac{1}{\left(1+Y_{n-1, t+1}\right)^{n-1}}\right)
\end{aligned}
$$

However :

$$
\mathrm{E}_{t}\left(\frac{1}{\left(1+Y_{n-1, t+1}\right)^{n-1}}\right)>\frac{1}{\mathrm{E}_{t}\left(\left(1+Y_{n-1, t+1}\right)^{n-1}\right)}
$$

(Jensen's Inequality)

