Homework No. 6

Submit the all Java files developed to solve the problems listed below.

Problem No. 1
(Quicksort) Consider now the recursive sorting technique called Quicksort. The basic algorithm for a
one-dimensional array of values is as follows:
a) Partitioning Step: Take the first element of the unsorted array and determine its final
location in the sorted array (i.e., all values to the left of the element in the array are less
than the element, and all values to the right of the element in the array are greater than
the element). We now have one element in its proper location and two unsorted subarrays.
b) Recursive Step: Perform step 1 on each unsorted subarray.
Each time step 1 is performed on a subarray, another element is placed in its final location of the
sorted array, and two unsorted subarrays are created. When a subarray consists of one element, it
must be sorted; therefore, that element is in its final location. The basic algorithm seems simple, but
how do we determine the final position of the first element of each subarray? Consider the following
set of values (the element in bold is the partitioning element—it will be placed in its final location in the
sorted array):
3726489810126845
a) Starting from the rightmost element of the array, compare each element to 37 until an
element less than 37 is found, then swap 37 and that element. The first element less than 37
is 12, so 37 and 12 are swapped. The new array is
122648981037 6845
Element 12 is italicized+ bold to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare each
element to 37 until an element greater than 37 is found, then swap 37 and that element. The
first element greater than 37 is 89, so 37 and 89 are swapped. The new array is
122643781089 6845
c¢) Starting from the right, but beginning with the element before 89, compare each element to
37 until an element less than 37 is found, then swap 37 and that element. The first element
less than 37 is 10, so 37 and 10 are swapped. The new array is
1226410837 896845
d) Starting from the left, but beginning with the element after 10, compare each element to 37
until an element greater than 37 is found, then swap 37 and that element. There are no more
elements greater than 37, so when we compare 37 to itself, we know that 37 has been placed
in its final location of the sorted array.
Once the partition has been applied to the above array, there are two unsorted subarrays. The
subarray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than
37 contains 89, 68 and 45. The sort continues with both subarrays being partitioned in the same
manner as the original array. The algorithm has the following recursive structure:

procedure quicksort(arr: integer[], left, right: integer);



var i;

begin

if right > left then

begin
i:=:partition(arr, left, right)
quicksort (arr, left, i- 1) ;
quicksort(arr,, i+l, right);,

end

end

Using the preceding discussion, write recursive procedure QuickSort to sort a one-dimensional
Integer array. The procedure should receive as arguments an Integer array, a starting index and an
ending index. Method partition() should be called by method quickSort() to perform the partitioning
step.

Write also a Java JApplet application with appropriate GUI to test the Quick sort with an array of
integer numbers of an arbitrary dimension (allow the user to add the numbers from a JTextField to
a JTextArea positioned on the left side of the applet by clicking a JButton, then use another JButton to
quickSort the numbers displayed in the leftside JTextArea and display them in the rightside
JTextArea).

3agava 2
MeToabT 3a copTupaHe No MeToAa Ha MexXypuyeTo, nokasaH Ha Fig. 7.11 (o7 sexums Ch-07Plus,

nobaBeH 3a ygobcTBO B SampleCodeLabl2b. rar ) He e edheKTUBEH 3a rofieMyn MacuBu.
HanpaseTe cnegHuTe NnpomMeHun 3a Aa Nnogobpute 6bLP304ENCTBMETO HA TO3U anropUTHM.

a) Crnep nbpBMSA Nac e CUrypHo, Ye Han- ronsiMoTO YNCIIO Ce HamMepa B Kpasi Ha Macuea, cneg
BTOpUA Nac ABETE Hal- rofemMun Yncna ca “Ha mecrata cu” 1 T.H. Taka BMecTo ga ce npasaTt 9
CpaBHEHWs1 Ha BCekM nac 3a copTupaHe Ha 10 yncna, NpoMeHeTe TO3n anropuTbM aa npasu 8
CpaBHEHWsI HA BTOPMUS Nac, 7 CPaBHEHMS Ha TPETMS Nac U T.H.

b) Hanuwete koga Ha Nnporpamara, Taka Ye U3MbITHEHMETO M Aa He 3aBUCU OT AbIKUHATA Ha
MacuvBa, KOWTO Ce nogaea 3a CopTMpaHe

c) Ako MacuBabT € COpPTUPaH Npu 3a4aBaHETO CU, HYXKHO W € Aa ce nNpaBAaT 9 naca a
copTupaHe Ha 10 yucna unum no- Marnko naca we cebpliaT cbliata pabota? lNpomeHeTe
KoAa 3a copTupaHe ga NpoBepsiBa B Kpasi HA BCEKM Nac Aanu ca NnpaBeHn pasMeHu Ha
enemMeHTu. AKO He ca NpaBeHM pasMeHu, TO MacMBa 1 BeYe HapedeH 1 nporpamara Moxe aa

npuknoyn. B npoTnBeH cny4yan ce npemMuHaBa KbM CriefBallusi nac.

3agaua 3
(Selection Sort)

A selection sort searches an array looking for the smallest element in the array, then swaps that
element with the first element of the array. The process is repeated for the sub array beginning with
the second element. Each pass of the array places one element in its proper location. For an array of
n- elements, n- 1 passes must be made, and for each sub array, n- 1 comparisons must be made to
find the smallest value. When the sub array being processed contains one element, the array is

sorted.



Write a recursive method selectionSort to perform this algorithm. Write also a Java JApplet
application with appropriate GUI to test the Selection sort with an array of integer numbers of an
arbitrary dimension (allow the user to add the numbers from a JTextField to a JTextArea positioned
on the left side of the applet by clicking a JButton, then use another JButton to selectionSort the
numbers displayed in the leftside JTextArea and display them in the rightside JTextArea).



